Трехцветный светодиод с двумя выводами

Применение светодиодов в электронных схемах

Трехцветный светодиод с двумя выводами

Светодиод – один из самых распространенных компонентов, встречающихся в современной технике. Светодиоды применяются для индикации состояния работы приборов, а также для подсветки или в качестве фонарей. По диапазону излучения выделяют светодиоды видимого диапазона (красные, желтые, зеленые, белые) и светодиоды инфракрасного или ультрафиолетового излучения (пульты дистанционного управления). Светодиоды по своей структуре относятся к полупроводниковым приборам, таким диод или тиристор. Поэтому развитие светодиодов неразрывно связано с развитием полупроводников.

Светодиод обладает односторонней проводимостью, благодаря одному p-n переходу. В начале 20 века советский ученый Олег Владимирович Лосев обратил внимание на свечение кристаллов полупроводников, возникающее при включении полупроводника в прямом направлении. В то время свечение было едва заметно, однако именно это свойство полупроводников и легло в основу развития светодиодной техники. Рисунок 1 Современные светодиоды позволяют выбрать любую гамму излучения за счет применения легирующих примесей в p-n переход.

Например, фосфор позволяет получить красный оттенок, алюминий – желтый, галлий – зеленый или голубой. Еще один способ изменения цвета свечения светодиода – введение люминофора, позволяющего давать видимый свет при воздействии на него другого излучения. Для светодиодов добавление люминофора в кристалл голубого свечения получается белый цвет. Применение фокусирующей линзы позволяет увеличить интенсивность излучения. Развитие технологий позволило создать двухцветный светодиод. Двухцветные светодиоды могут выпускаться с тремя (рисунок 2) или двумя выводами.

Для последних изменение свечения происходит при изменении направления тока. Рисунок 2 Стоит отметить, что при подключении светодиодов в любую цепь последовательно с ним необходимо подключать балластное сопротивление. Большинство современных светодиодов выпускаются со встроенным токоограничивающим сопротивлением. Как известно, работа светодиода зависит от величины тока, т. е. светодиод можно подключить даже к сети с напряжением в 220В, но с ограничителем тока в цепи.

Прямое напряжение для большинства светодиодов превышает 2В, поэтому одной батарейки с напряжением в 1,5В не всегда будет достаточно для работы светодиода. Стандартный ряд напряжений начинается с 3В, а наиболее часто используются светодиоды на напряжение 12В. Еще одна важная характеристика светодиодов – величина обратного напряжения. Обычно обратное напряжение не превышает 100В, поэтому для защиты светодиодов применяют схемы встречно-параллельного выключения (рисунок 3). Рисунок 3 Рассмотрим несколько устройств, в которых используются светодиоды.

Большинство из них строятся на базе микроконтроллеров, дабы упростить схему и сократить количество элементов на плате. Первое устройство представляет собой блок управления двухцветным светодиодом с тремя выводами (рисунок 4). Принцип работы схемы следующий: при одинаковых потенциалах на входах IN1 и IN2 на выводах OUT1 и OUT2 потенциалы также одинаковы и светодиоды погашены. При наличии сигнала высокого уровня на одном из входов загорается один из светодиодов HL1 или HL2. Регулировка яркости свечения светодиода осуществляется напряжением на входе Vref.

Рисунок 4 Расчет и выбор балластного сопротивления R2 основывается на законе Ома. Исходные данные для расчета: напряжение питания 12В, прямой ток светодиода 10мА, падение напряжения на светодиоде 2В. Тогда сопротивление R2 можно рассчитать по формуле:

[size=16]

R2 = (Uпит-U) / I = (12 — 2) / 0,010 = 1000(Ω) или 1КОм

Трехцветные светодиоды (RGB-светодиоды)

RGB-светодиоды, в первую очередь, предназначены для создания декоративной подсветки. RGB-светодиод имеет четыре вывода, а для управления его работой применяют специальные контроллеры. На базе RGB-светодиодов строятся светодиодные ленты. Трехцветные светодиоды позволяют создавать практически любой оттенок. Ниже приведена схема подключения трехцветного светодиода (Рисунок 5). Рисунок 5 В основе RGB-светодиода лежат три излучателя. Сопротивления в схеме подобраны таким образом, чтобы свет светодиода был белым. Устройство, собранное по приведенной схеме (рисунок 6) применяется для подсветки в автомобиле. Рисунок 6 Еще один вариант использования светодиодов в автомобиле – это схема подсветки номера (рисунок 7). Рисунок 7 В схеме применяются шесть светодиодов с максимальным током 35 мА (ток ограничен на уровне 27мА стабилизатором тока DA1) и световым потоком в 4 лм. Как отмечалось ранее, для питания светодиодов не достаточно одной батарейки с напряжением 1,5В. Однако существует схема преобразователя для питания белого светодиода от одной батарейки (рисунок 8). Принцип работы схемы: при низком уровне сигналов на выводах микроконтроллера РВ1 и РВ2, высоком уровне на выводах РВ0 и РВ4 происходит зарядка конденсаторов С1 и С2 до напряжения 1,4В. При изменении сигналов микроконтроллера к светодиоду прикладывается напряжение от двух заряженных конденсаторов и батарейки, что в сумме дает около 4,5В. Частота зажигания светодиода определяется частотой выходных сигналов микроконтроллера. Рисунок 8 Аналогичную схему можно собрать на базе логических микросхем (рисунок 9). Рисунок 9 Светодиоды достаточно надежные элементы, поэтому зачастую их используют в нескольких схемах, просто выпаивая элемент из уже ненужной платы. Однако при этом необходимо определить полярность светодиода для дальнейшего его использования. Прозвонка светодиодов мультиметром не всегда дает однозначный вывод о работоспособности диода, поэтому лучшим вариантом для проверки светодиодов является их проверка через подключение к источнику питания. Проверку любого светодиода следует выполнять через ограничивающий резистор номиналом от 200 до 500 Ом (рисунок 10) и выходным напряжением источника питания не менее 4,5В. Рисунок 10 Еще один момент, на который необходимо обратить внимание при использовании светодиодов — это правильное подключение нескольких светодиодов в одну цепь (рисунок 11). Рисунок 11 Стоит отметить, что двух одинаковых светодиодов не бывает. Поэтому имеется определенный разброс параметров светодиодов, особенно это сказывается на схемах параллельного включения светодиодов. При параллельном включении светодиодов необходимо подбирать балластное сопротивление под каждый светодиод в отдельности, так как небольшое отклонение в падении напряжения на элементе не позволит добиться одинаковой яркости свечения для всех светодиодов.

Читайте также  Светодиод для налобного фонарика

Практика применения светодиодов:

Самодельный светильник из светодиодной ленты
Светодиодные деревья — новый вид праздничной светотехники
Делаем светодиодную подсветку салона автомобиля

Как подключить светодиодную ленту

Питание светодиодных лент
Блоки питания для светодиодных лент
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Последние ответы на форуме ukrelektrik.com

Заземление, зануление
rashpilek1975 Alexzhuk / 37 Электроотопление
IusCoin Multiki / 68 Всё обо всём — общение
2alpilip Наде4ка / 29

Источник: http://ukrelektrik.com/publ/primenenie_svetodiodov_v_ehlektronnykh_skhemakh/1-1-0-1508

Как правильно подключить двухцветный светодиод?

Трехцветный светодиод с двумя выводами

Светодиодами называют электронные компоненты разных размеров и цветов, которые заключены в прозрачный корпус. Линзы из эпоксидной смолы являются корпусом светодиода, кристаллы — источником света, длинный вывод – анод, короткий — катод. Определить какого свечения будут лампы сразу невозможно. Лампы начинают светиться тогда, когда ток идет в прямом направлении. Интенсивность свечения пропорциональна электрическому току.

Каждый светоизлучающий диод по всем законам физики должен давать лишь один цвет. Он зависит от материала, из которого изготовлен полупроводник. Никаких изменений в процессе эксплуатации не происходит. Как же тогда создается двухцветный светодиод? А многоцветный?

Описание двухцветных светодиодов

Двухцветный светодиод – это два отдельных светоизлучателя, объединенных на одном кристалле и изготовленные из разных полупроводниковых сплавов. Такой LED выдает минимум два цвета. Поскольку его корпус выполнен из специального светорассеивающего пластика, одновременно работающие два светоизлучателя создают третий цвет.

Учитывая особенности восприятия человеком цветовых смесей, в светодиоде на 2 цвета чаще всего используются следующие сочетания:

  • красный – желто-зеленый;
  • красный – синий или зеленый
  • красный – желтый;
  • желтый – зеленый;
  • желтый – желто-зеленый.

Также светодиод на 2 цвета можно разделить на несколько типов:

  • двухцветный светодиод с двумя выводами, имеющий встречно-параллельное соединение;
  • двухцветный светодиод с тремя выводами, которые представляют из себя два отдельных излучателя с общим катодом либо двухцветный светодиод с общим анодом.

В одном корпусе LED могут быть разные лампы:красно-желтые, красно-зеленые, сине-желтые и другие. Трехцветный светодиод объединяет в одном корпусе красные, зеленые и синие лампы.

Самый распространенный трехвыводной LED — с двумя светодиодами зеленой и красной лампы в одном корпусе. Такие LED более востребованы, поскольку их применение дает больше цветовых гамм, что позволяет выпускать недорогие светильники, лампы которых способны менять свет в широком спектре. С помощью импульсного модулятора, меняя интенсивность свечения каждого полупроводника, удается изменять и тон освещения у каждого диода. Для предотвращения возможной перегрузки, для каждого светодиода предусмотрен отдельный резистор.

Область применения двухцветных светодиодов

Светодиод на 2 цвета — это интегрированная сборка с двумя светоизлучающими кристаллами на одной подложке. Несмотря на довольно ограниченный спектр излучения, светодиоды на 2 цвета нашли широкое применение в:

  • приборостроении, как двухцветный светодиод 5мм, использующийся в качестве индикатора;
  • рекламном бизнесе для привлечения внимания потребителя;
  • декорировании помещений, используя возможности игры света;
  • современных средствах сигнализации, как, например, мигалка на двухцветном светодиоде, светофоры;
  • тюнинговании автомобилей;

Эти приборы широко применяются в системах сигнализации, индикации и визуального оформления. 2- х цветное LED освещение активно используется в создании электронных табло и указателей. Кроме того, двухцветный светодиод применяется в качестве индикатора вращения электродвигателя, работающего на постоянном токе, демонстрируя в какую сторону идет вращение.

В зависимости от производственной либо декоративной необходимости, инженер или дизайнер может использовать определенный набор 2-х цветных светоизлучающих диодов для решения стоящих перед ними задач.

Cветодиод на 2 цвета – это два обычных светодиода в одном корпусе. У него две ноги и каждая одновременно является катодом светодиода одного цвета и анодом другого цвета. Поэтому от того в каком направлении через двухцветный диод движется ток зависит каким цветом будут светиться лампы. Для такого LED необходим только один резистор. Двухцветные светодиоды менее популярны, чем трехцветные. Примером светодиода на 2 цвета является зарядка для мобильного устройства и аккумуляторной батареи, когда лампочка индикатора в момент зарядки светится красным, а после зарядки батареи свет меняется на зеленый.

В автомобилях LED лампы используются там, где требуется 2 цвета в фаре, когда одна лампа одновременно выполняет роль габарита и поворотника. Габариты при этом будут красные, а поворотники — желтыми.

Как подключить двухцветный светодиод?

Подключение светодиодов к цепи требует подключения балластного сопротивления, которое встроено в современные светодиоды. Ограничивая ток в цепи, подключение светодиода возможно с напряжением в сети 220В.

Читайте также  Плавное включение и выключение светодиодов своими руками

Стандартная схема включения светодиодов

Свечение светодиода на 2 цвета меняется от того, в какую сторону через лампу течет ток. Схема прибора вполне понятна. В ней есть резистор и два включенных навстречу друг другу диода, которые соединены параллельно. При протекании тока в прямом направлении один диод оказывается запертым и не светится. При движении тока в обратном направлении все меняется с точностью наоборот.

После определения тока и напряжения светодиода можно рассчитать параметры сопротивления, которые ограничивают ток в цепи. В простейшей схеме включения двухцветного светодиода резистор ограничивает ток. После расчета сопротивления, рассчитывается его мощность. Если выбирать маломощный резистор, то есть вероятность, что он в скором времени выйдет из строя. При последовательном соединении LED хватит одного резистора, подключенного к цепи.

Светодиоды с различными номинальными токами нельзя соединять последовательно. Для правильного подключения надо понимать, что при параллельном подключении сила тока суммируется, а при последовательном подключении суммируется напряжение. Параллельное и последовательное подключение возможно только одинаковых светодиодов с использованием одного резистора.

А если происходит подключение разных светодиодов, то для надежности лучше рассчитать каждому LED свой пассивный элемент электрической цепи.

Источник: http://led-svetodiody.ru/info/dvuhcvetnyy-svetodiod

RGB светодиод — принцип работы и виды цветных LED. Многоцветные RGBW

Трехцветный светодиод с двумя выводами

В основе идеи создания трехцветного светодиода лежит оптический эффект получения разнообразных оттенков путем смешивания 3-х базовых цветов. В качестве базовых цветов обычно используются красный (R), зеленый (G) и синий (B). Поэтому был создан именно rgb светодиод.

Как устроены 3 цветные led диоды

Конструктивно трехцветный светодиод представляет собой 3 цветных светодиода, смонтированных в общем корпусе, а если быть более точным, 3 кристалла, интегрированных на одной матрице. На рис.1 представлена микрофотография интегрального rgb светодиода. Цветные квадраты на фото – это кристаллы основных цветов.

Виды

Для адаптации к разным вариантам схемы управления, ргб диоды производятся в нескольких модификациях:

  • Исполнение с общим катодом
  • Исполнение с общим анодом
  • Без общего анода или катода, с шестью выводами

В первом случае светодиод управляется сигналами положительной полярности, поступающими на аноды, во втором – отрицательными импульсами, подаваемыми на катоды. Третья модификация исполнения допускает любые варианты коммутации и выпускается обычно в виде SMD компонента.

Подключение

В качестве примера приведем схему подключения ргб диодов к универсальному блоку автоматики Arduino, созданному на базе микроконтроллера ATMEGA. На рис. 2 показана схема подключения rgb led с общим катодом.

Ниже схема с общим анодом:

Выводы RGB в обоих случаях подключаются к цифровым выходам (9, 10,12). Общий катод на Рис.2 соединен с минусом (GND), общий анод на Рис.3 – с плюсом питания (5V).

Arduino — простой контроллер для начинающих роботехников, позволяющий создавать на своей базы различные устройства, от обычной цветомузыки на светодиодах до интеллектуальных роботов.

Управление

Включение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым.

На цифровых выходах платы Arduino формируются периодические прямоугольные импульсы напряжения, как на рисунке 4., с изменяемой скважностью.

Для тех, кто забыл. Скважностью называется отношение длительности периода следования импульсов к длительности импульса.

Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера. Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией).

На Рис.4 приведены примеры диаграмм прямоугольных импульсов различной скважности.

Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета.

На схеме (Рис.5) rgb диоды (led1- led10) имеют общий анод. Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3.

При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета.

Перед подключением нужно правильно определить полярность светодиода, иначе он не будет светиться.

Применение цифровых программируемых контроллеров предоставляет практически безграничные возможности управления цветом. В тех же случаях, когда не требуется создание цветовых динамических образов, может быть применен аналоговый способ управления. Это могут быть наружные или интерьерные светильники для статической подсветки с выбором цвета.

Кстати. Применение такого регулирования в системах подсветки панелей приборов транспортных средств позволяет водителю выбирать любой оттенок и яркость.

RGBW светодиоды

Для того чтобы получить чисто белый цвет, используя разноцветный rgb светодиод, необходима точная балансировка яркости свечения по кристаллу каждого цвета. На практике это бывает затруднительно. Поэтому, для воспроизведения белого цвета и увеличения разнообразия цветовых эффектов, rgb диод стали дополнять четвертым кристаллом белого свечения. Чаще всего, RGBW светодиоды используются в светодиодных лентах RGBW SMD. Для питания таких светодиодных лент созданы специальные RGBW контроллеры, как правило, управляемые пультами дистанционного управления на инфракрасных лучах.

Читайте также  Драйвер для светодиодов из энергосберегающей лампы

На фотографии представлен мощный четырехцветный светодиодный модуль SBM-160-RGBW-H41-RF100 производства Luminus Devices Ink.

Применение

Основной сферой применения rgb светодиодов является создание световых эффектов для рекламы, сценическое оформление концертных площадок, развлекательных мероприятий, праздничное декорирование зданий, подсветка фонтанов, мостов, памятников.  Интересные результаты получаются при использовании rgb led диодов для дизайнерского светового оформления интерьеров. Для этих целей налажен выпуск разнообразной светотехники на основе rgb и rgbw – диодной технологии, номенклатура которой продолжает расширяться и завоевывать новые области применения.

Для закрепления рассмотренного материала рекомендуем посмотреть видео, автор которого очень доходчиво и интересно рассказывает про многоцветные RGB светодиоды.

Вывод

Многоцветный RGB светодиод — это разновидность обычного LED. Его конструктивная особенность позволяет получить любой спектр излучаемого цвета радуги. Это одновременно увеличивает его стоимость и усложняет схему подключения. Поэтому перед выбором, задайтесь вопросом, действительно ли Вам нужен RGB светодиод или достаточно воспользоваться обычным LED нужного цвета?

Источник: http://ledno.ru/svetodiody/trexcvetnye-rgb.html

Двухцветный светодиод с тремя выводами схема подключения

Трехцветный светодиод с двумя выводами

Словосочетание двухцветный светодиод свидетельствует о свечении такого чипа двумя цветами. У этого вида источников света 2 разноцветных кристалла и 2 или 3 вывода. Конструкция похожа на RGB, но принцип работы другой – один кристалл горит, если ток проходит одном направлении, второй – при изменении полярности. Это особенность используется в индикаторах и системах сигнализации различного электрооборудования.

Характеристика двухцветных диодов с двумя и тремя выходами

В двухцветный диод установлены 2 кристалла,соединенные встречно-параллельно. Корпус имеет стандартные размеры DIP И SMD с двумя или тремя выводами. При первом варианте каждый вывод служит анодом одного кристалла и катодом другого. Такой источник излучает 2 или 3 цвета. Третий получается при одновременном свечении обеих кристаллов.

Возможные комбинации цветов:

  • красный и синий;
  • красный и зеленый;
  • красный и желтый или желто-зеленый;
  • синий и желтый;
  • зеленый и желтый.

Падение напряжения зависит от цвета кристалла:

  • красный 1,6 В;
  • зеленый 1,8 В;
  • синий 3,5 В;
  • желтый 1,7 В.

Важно! Двухцветный светодиод всегда можно заменить двумя чипами разного цвета, соединенными по соответствующей схеме.

Если у двухцветного светодиода 2 вывода, кристаллы соединены встречно-параллельно. В конструкции с общим анодом или катодом установлено 2 светодиода разного цвета.

В чипах с двумя выводами общий контакт чаще всего расположен посередине корпуса, но бывают исключения. Определить полярность можно при помощи омметра.

Цвета кристаллов подбираются в соответствии с правилами эргономики. Зеленый цвет чаще всего указывает на нормальную работу оборудования, красный – на аварийную ситуацию. Для определения режима ждущего режима используется желтый цвет. Синие кристаллы используются для подсветки поверхностей темных оттенков.

Принцип работы двухцветных светодиодов

Принцип работы элементов с двумя выводами простой. Цвет свечения меняется одновременно с изменением полярности подключения. Это значит, что цвет полностью зависит от того, в какому пути проходит ток. При подаче плюса на один из выводов один кристалл начинает светиться, второй запирается. После смены полярности запертый начинает светиться, светящийся запирается.

Такая схема используется в индикаторах, работающих от переменного напряжения. Двухцветные диоды соединяются параллельно и встречно, ток ограничивает один резистор. Такие элементы часто монтируются в кнопочные выключатели, при помощи которых меняется цвет свечения.

Так как цвет свечения светодиодов ненасыщенный и тусклый, при смешении образуется оттенок, который человеку сложно определить. Еще одна особенность – изменение оттенка при взгляде на источник света с различных ракурсов.

Ситуация меняется, если речь идет о двухцветном светодиоде с тремя выводами в сочетании с микроконтроллером. Эта схема дает возможность включать каждый цвет по отдельности и одновременно оба. При подключении к схеме ШИМ регулятора появляется возможность менять яркость свечения каждого кристалла, чтобы добавить дополнительные оттенки.

Сфера применения

Особенности спектра излучения не мешают светодиодам с двойным свечением найти сферу применения.

Светодиодные индикаторы на основе двухцветных диодов используются:

  • в рекламе;
  • в системах сигнализации (светофорах, мигалках, указателях, электронных табло);
  • в электродвигателях (для определения стороны вращения);
  • при декорировании помещений;
  • в телефонах, планшетах, фотоаппаратах;
  • в зарядках различных аккумуляторов;
  • для тюнинга автомобилей.

Внимание! Двухцветная лампа с цоколем H7 устанавливается в фары автомобилей ближнего (белая) и дальнего (желтая) света, с цоколем PY21W или P21W – в поворотники (красная) и габариты (желтая).

В быту из двухцветных светодиодов можно сделать гирлянду. Одни цвет горит во время положительного полупериода, второй – во время отрицательного.

Схемы подключения двухцветных светодиодов

Чтобы сделать электроприбор своими руками, необходимо знать, как подключить двухсветный светодиод. Самый простой (но не совсем правильный) вариант – подключаем питания к ножкам через резистор и определяем циклов включения/выключения.

Чтобы добавить к схеме резистор, необходимо рассчитать значения его сопротивления и мощности.

С 2015 года ГОСТом 29433-2014 определены новые параметры напряжения электросети:

  • номинальное 230 В;
  • минимальное 207 В, под нагрузкой 198 В;
  • максимальное 253 В.

Сопротивление резистора должно иметь такое значение, чтобы через него мог протекать ток, необходимый для нормального функционирования двухцветного светодиода, но элемент при этом не перегревался. Поэтому значение номинального тока 20 мА для расчетов заменяется другим значениеем — 7 мА = 0,007 А, позволяющим диоду нормально светиться.

Источник: http://vemiru.ru/info/dvuhcvetnyj-svetodiod-s-tremja-vyvodami-shema/