Светодиод инфракрасного спектра излучения

Содержание

Излучающие диоды ИК диапазона, технические характеристики, параметры, описание

Светодиод инфракрасного спектра излучения

Диоды излучающие, арсенидогаллиевые, мезаэпитаксиальные. Предназначены для работы в качестве источников ИК излучения. Конструктивно оформлены в пластмассовой оболочке. Маркируются: 3Л107А — одной полоской; 3Л107Б — двумя полосками; АЛ107А — одной точкой; АЛ107Б — двумя точками. Масса диода не более 0,2 г.

Внешний вид приведен на рисунке 1.

Рисунок 1. Внешний вид излучающих диодов ИК диапазона 3Л107А, 3Л107Б, АЛ107А, АЛ107Б.

Некоторые электрические и излучательные параметры:

Мощность излучения при Т=+25°С и Iпр=100 мА, не менее:

   — 3Л107А, АЛ107А …… 6 мВт

   — 3Л107Б, АЛ107Б …… 10 мВт

Импульсная мощность излучения при Iпр=0,8 А и Ти=50 мкс, не менее:

   — 3Л107А …… 30 мВт

   — 3Л107Б …… 50 мВт

Длина волны излучения в максимуме спектральной плотности при Iпр=100 мА …… 0,9..12 мкм

Постоянное прямое напряжение при Iпр=100 мА, не более:

   — При Т>+25°С …… 2 В

   — При Т=-60°С …… 2,5 В

Предельные эксплуатационные данные:

Постоянный прямой ток:

   — При Т≤+35°С …… 100 мА

   — При Т=+85°С …… 80 мА

Импульсный прямой ток при Ти≤50 мкс и Q=20 для 3Л107А, 3Л107Б

   — При Т≤+35°С …… 0,6 А

   — При Т=+85°С …… 0,65 А

Температура окружающей среды -60..+85°С

3Л115А, АЛ115А

Диоды излучающие, арсенидогаллиевые, мезаэпитаксиальные. Предназначены для работы в качестве источников ИК излучения. Выпускаются в защитной пластмассовой оболочке. Тип диода приводится на групповой таре. Положительный вывод отмечается белой точкой. Масса диода 0,2 г.

Внешний вид приведен на рисунке 2.

Рисунок 2. Внешний вид излучающих диодов ИК диапазона 3Л115А, АЛ115А.

3Л118А, АЛ118А

Диоды излучающие, арсенидогаллиевые, импульсные, мезаэпитакснальные. Предназначены для использования в аппаратуре в качестве источников ИК излучения. Выпускаются в пластмассовом корпусе. Диоды 3Л118А маркируются черным ободком на корпусе. Черная точка на корпусе ставится со стороны анодного вывода. Масса не более 0,2 г Внешний вид соответствует приборам приведенным на рисунке 3.

Рисунок 3. Внешний вид излучающих диодов ИК диапазона  3Л118А, АЛ118А.

3Л119А, 3Л119Б, АЛ119А, АЛ119Б

Диоды излучающие, арсенидогаллиевые, мезаэпитаксиальные. Предназначены для использования в аппаратуре в качестве источников ИК излучения. Выпускаются металлостеклянном корпусе. Тип диода приводится на групповой таре. Масса не более 0,3 г. Внешний вид приведен на рисунке 4.

Рисунок 4. Внешний вид излучающих диодов ИК диапазона 3Л119А, 3Л119Б, АЛ119А, АЛ119Б.

3Л129А

Диоды излучающие, на основе арсенида-галлия-алюминия, мезаэпитаксиальные. Предназначены для использования в качестве источников непрерывного или импульсного излучения. Выпускаются в пластмассовом корпусе с гибкими выводами. Длинный вывод соответствует положительной полярности подаваемого напряжения. Масса диода не более 0,2 г. Внешний вид соответствует приборам приведенным на рисунке 5.

Рисунок 5. Внешний вид излучающих диодов ИК диапазона 3Л129А.

Инфракрасные светодиоды — виды, область применения, характеристики

Светодиод инфракрасного спектра излучения

Инфракрасный (ИК) излучающий диод представляет собой полупроводниковый прибор, рабочий спектр которого расположен в ближней области инфракрасного излучения: от 760 до 1400 нм. В интернете часто встречается термин «ИК светодиод», хотя свет, видимый человеческим глазом, он не излучает. То есть в рамках физической оптики этот термин неверен, в широком же смысле название применимо. Стоит отметить, что во время работы некоторых ИК излучающих диодов можно наблюдать слабое красное свечение, что объясняется размытостью спектральной характеристики на границе с видимым диапазоном.

Не стоит путать ИК светодиоды с лазерными диодами инфракрасного излучения. Принцип действия и технические параметры этих приборов сильно отличаются.

Область применения

На том, какими бывают инфракрасные светодиоды и где применяются, остановимся подробнее. Многие из нас ежедневно сталкиваются с ними, не подозревая об этом. Конечно же, речь идёт о пультах дистанционного управления (ПДУ), одним из важнейших элементов которого является ИК излучающий диод. Благодаря своей надёжности и дешевизне метод передачи управляющего сигнала с помощью инфракрасного излучения получил огромное распространение в быту. Главным образом такие пульты применяются для управления работой телевизоров, кондиционеров, медиа проигрывателей.

В момент нажатия кнопки на ПДУ ИК светодиод излучает модулированный (зашифрованный) сигнал, который принимает и затем распознаёт фотодиод, встроенный в корпус бытовой техники. В охранной сфере большой популярностью пользуются видеокамеры с инфракрасной подсветкой. наблюдение, дополненное ИК подсветкой, позволяет организовать круглосуточный контроль охраняемого объекта, независимо от погодных условий. В данном случае ИК светодиоды могут быть встроены в видеокамеру либо установлены в её рабочей зоне в виде отдельного прибора – инфракрасного прожектора.

Применение в прожекторах мощных ИК светодиодов позволяет осуществлять надёжный контроль прилегающей территории.

На этом их сфера применения не ограничивается. Весьма эффективным оказалось применение ИК излучающих диодов в приборах ночного видения (ПНВ), где они выполняют функцию подсветки. С помощью такого прибора человек может различать предметы на достаточно большом расстоянии в тёмное время суток. Устройства ночного видения востребованы в военной сфере, а также для скрытого ночного наблюдения.

Разновидности ИК излучающих диодов

Ассортимент светодиодов работающих в инфракрасном спектре насчитывает десятки позиций. Каждому отдельному экземпляру присущи определённые особенности. Но в целом, все полупроводниковые диоды ИК диапазона можно разделить по следующим критериям:

  • мощности излучения или максимальному прямому току;
  • назначению;
  • форм-фактору.

Слаботочные ИК светодиоды предназначены для работы на токах не более 50 мА и характеризуются мощностью излучения до 100 мВт. Импортные образцы изготавливаются в овальном корпусе 3 и 5 мм, который в точности повторяет размеры обычного двухвыводного индикаторного светодиода. Цвет линзы – от прозрачного (water clear) до полупрозрачного голубого или жёлтого оттенка. ИК излучающие диоды российского производства до сих пор производят в миниатюрном корпусе: 3Л107А, АЛ118А. Приборы большой мощности выпускают как в DIP корпусе, так и по технологии smd. Например, SFH4715S от Osram в smd корпусе.

Читайте также  Фитолампа своими руками из светодиодов

Технические характеристики

На электрических схемах ИК излучающие диоды обозначают так же, как и светодиоды, с которыми они имеют много общего. Рассмотрим их основные технические характеристики.

Рабочая длина волны – основной параметр любого светодиода, в том числе инфракрасного. В паспорте на прибор указывается её значение в нм, при котором достигается наибольшая амплитуда излучения.

Так как ИК светодиод не может работать только на одной длине волны, принято указывать ширину спектра излучения, которая свидетельствует об имеющемся отклонении от заявленной длины волны (частоты). Чем уже диапазон излучения, тем больше мощности сконцентрировано на рабочей частоте.

Номинальный прямой ток – постоянный ток, при котором гарантирована заявленная мощность излучения. Он же является максимально допустимым током.

Максимальный импульсный ток – ток, который можно пропускать через прибор с коэффициентом заполнения не более 10%. Его значение может в десять раз превышать постоянный прямой ток.

Прямое напряжение – падение напряжения на приборе в открытом состоянии при протекании номинального тока. Для ИК диодов его значение не превышает 2В и зависит от химического состава кристалла. Например, UПР АЛ118А=1,7В, UПР L-53F3BT=1,2В.

Обратное напряжение – максимальное напряжение обратной полярности, которое может быть приложено к p-n-переходу. Существуют экземпляры с обратным напряжением не более 1В.

ИК излучающие диоды одной серии могут выпускаться с разным углом рассеивания, что отображается в их маркировке. Необходимость в однотипных приборах с узким (15°) и широким (70°) углом распределения потока излучения вызвана их различной сферой применения.

Кроме основных характеристик, существует ряд дополнительных параметров, на которые следует обращать внимание при проектировании схем для работы в импульсном режиме, а также в условиях окружающей среды, отличных от нормальных. Перед проведением паяльных работ следует ознакомиться с рекомендациями производителя о соблюдении температурного режима во время пайки. О допустимых временных и температурных интервалах можно узнать из datasheet на инфракрасный светодиод.

Источник: https://ledjournal.info/spravochnik/infrakrasnye-svetodiody.html

Инфракрасный светодиод: как проверить, где используют, виды

Светодиод инфракрасного спектра излучения

Инфракрасный светодиод нашел самое широкое применение практически во всех сферах нашей жизни. Этот прибор можно встретить в бытовой и медицинской технике, он участвует в сложных технологических процессах и служит военным. В этой статье мы поговорим о полупроводниках инфракрасного спектра – узнаем, что это за приборы, почему так называются, а заодно проверим их исправность подручными средствами.

Что такое ИК-излучение

Прежде чем поговорить об инфракрасных светодиодах, разберемся, что такое инфракрасное (ИК) излучение. Взглянем на упрощенную таблицу спектра электромагнитного излучения.

Таблица спектра электромагнитного излучения

Начинается она с ультрафиолета, с понижением частоты переходит сначала в видимый свет – от фиолетового до красного, затем в инфракрасное излучение и заканчивается обычными радиоволнами, которые мы используем в радиосвязи. Участок, обозначенный как видимый спектр, так называется потому, что наш глаз его видит. Все остальные диапазоны, к которым относится и ИК-излучение, невидимы.

Чем же так примечателен инфракрасный диапазон? Во-первых, он полностью безвреден для людей и животных. И, во-вторых, он абсолютно не заметен для человеческого глаза, но заметен для электронных систем регистрации – от фотоприемников до обычных видеокамер. Именно поэтому ИК-светодиоды нашли такое широкое применение как в быту, так и на производстве.

Важно. Ультрафиолетовый спектр тоже не виден, но, в отличие от ИК-излучения, он оказывает существенное влияние на организм человека: из-за него можно легко испортить зрение и получить серьезные ожоги кожи.

Дополнительно инфракрасный диапазон делится на три поддиапазона:

  1. Ближний – 0.74…2.5 мкм.
  2. Средний – 2.5…50 мкм.
  3. Дальний – 50…2 000 мкм.

Полезно! Излучение от 0.74 до 0.86 мкм еще заметно невооруженным глазом и воспринимается как слабое красноватое свечение. Это следует учитывать при выборе приборов для скрытой подсветки ночных видеокамер и подобных целей.

Устройство и особенности ИК-светодиодов

Теоретически мы разобрались, чем отличаются инфракрасные светодиоды от обычных светоизлучающих. Но как это достигается на практике? Разберемся в принципе работы и тех, и других.

Некогерентные светодиоды

Конструктивно прибор представляет собой «слоеный пирог», состоящий из двух типов полупроводников: n и p. При прохождении тока через этот pn-переход отрицательный заряд электронов (n) соединяется с ионами положительно заряженных дырок (p). В этот момент выделяется энергия, и мы видим излучение света.

Принцип работы некогерентного светодиода

Но, как мы знаем, светодиоды могут светиться разным цветом, т. е. излучать волны разной длины – от ультрафиолета до инфракрасного спектра. Почему? На спектр излучения кристалла влияет тип материала, из которого он изготовлен. К примеру, светодиоды на основе нитрида алюминия работают в ультрафиолетовом спектре, фосфид галлия даст красный цвет, а приборы на основе арсенида галлия излучают в инфракрасном спектре.

Таким образом, светодиод инфракрасного спектра излучения отличается от светоизлучающего только материалом, из которого изготовлен полупроводник. Принцип же работы и у тех, и у других одинаков.

Осталось разобраться, почему они называются некогерентными. Любой светодиод излучает волну не строго определенной частоты, а захватывает небольшой участок спектра. Участок этот не особенно велик и лежит в одном цветовом диапазоне, но он есть.

То есть если полупроводник светится, скажем, синим, то этот цвет не чисто синий с определенной, строго заданной длиной волны, а просто спектр излучения прибора лежит в синем диапазоне. К примеру, устройства на основе селенида цинка излучают волны длиной от 450 до 500 нм, но мы все равно видим синий цвет. Это хорошо видно по нижеприведенной таблице спектров.

Таблица цветовых спектров

То же касается светодиодов и другого цвета свечения, включая инфракрасные. Для того чтобы получить излучение строго заданной частоты, используется совершенно иной принцип, а сами приборы, которые так работают, получили название полупроводниковых лазеров.

Лазеры – когерентные светодиоды

Полупроводниковый лазер представляет собой все тот же «слоеный пирог», только размеры этого «пирога» имеет строго заданные параметры, совпадающие с длиной волны определенного спектра или кратные ей. При этом торцы кристалла отполированы до зеркального блеска, а нижняя и верхняя его части непрозрачны.

Читайте также  Отсоединение чипа от поверхности кристаллодержателя светодиода

При подаче на кристалл напряжения происходит то же, что и в обычном светодиоде: он начинает излучать спектр волн, лежащих в некотором диапазоне. Излучение же, направленное внутрь, начинает отражаться от полированных стенок кристалла. Причем длина волны, на которую настроен кристалл, будет отражаться многократно, остальные частоты начнут затухать, накладываясь друг на друга в разных фазах.

Проходя вдоль кристалла, являющегося, по сути, резонатором, излучение определенной длины будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Эта фаза называется процессом накачки лазера. Как только усиление превысит потери, начнётся лазерная генерация.

Принцип работы полупроводникового лазера

Какими бывают

Как выглядит инфракрасный светодиод и можно ли его отличить от обычного? Вопрос довольно сложный, поскольку инфракрасные полупроводники имеют огромное количество форм-факторов – все зависит от их характеристик и назначения.

В компьютерных мышках и в пультах ДУ, к примеру, стоят обычные трехмиллиметровые приборы, в CD-приводах и лазерных принтерах – сверхминиатюрные в SMD или металлостеклянном корпусе. В ИК-прожекторах могут стоять как множество маломощных, так и несколько мощных инфракрасных светодиодов: обычных, диаметром до 10 мм или в SMD корпусе.

Примеры внешнего вида инфракрасных светодиодов

Цвет баллона тоже может быть различным – от прозрачного и металлического с прозрачным окном до матово-черного. Конечно, эти приборы можно отличить от светоизлучающих с красным и желтым баллонами – инфракрасные светодиоды не имеют таких цветов, но и только.

Что касается технических характеристик инфракрасных светодиодов, то основные из них следующие:

  1. Угол рассеивания. Чем этот параметр выше, тем меньше освещенности приходится на определенную поверхность объекта, но тем большую площадь он покрывает ИК-излучением. Измеряется в градусах телесного угла – стерадианах (Ω).
  2. Выходная мощность. Измеряется в ваттах (Вт) или милливаттах (мВт) и может колебаться от десятков милливатт до нескольких ватт.
  3. Рабочий ток. Ток, при котором гарантируются заявленные характеристики, включая наработку на отказ и выходную мощность излучения. Измеряется в амперах (миллиамперах).
  4. Прямое падение напряжения. Напряжение, которое падает на кристалле при номинальном токе. Зависит от материала кристалла и обычно не превышает 2 вольт.
  5. Обратное максимально допустимое напряжение. Напряжение обратной полярности, которое выдерживает кристалл без электрического повреждения. Для инфракрасных приборов обычно не превышает 1 вольта.
  6. Излучаемая длина волны. Если светодиод лазерный, то указывается одна длина волны, и это понятно. Если же это обычный инфракрасный светодиод, то нередко указывается диапазон излучаемых им волн, которые измеряются в нанометрах или микрометрах (нм или мкм).

Сфера применения

Сегодня ИК-светодиод можно встретить почти всюду.

В бытовой технике. Пульты для дистанционного  управления (ПДУ), лазерные принтеры, компьютерные «мыши», CD проигрыватели и т. д.

Пульт ДУ с инфракрасным светодиодом (свечение невидимо, но камера мобильного телефона его улавливает)

В системах охраны. Организация невидимого тревожного заграждения, невидимая подсветка объектов для камер ночного видеонаблюдения.

Организация светодиодного заграждения (направление невидимого ИК излучения показано условно)

В военной сфере. Невидимые невооруженным глазом лазерные ИК-прицелы, системы наведения управляемых ракет, дальномеры, прожекторы для приборов ночного видения.

Прибор ночного видения с ИК-подсветкой

В медицине. Пульсометры, тонометры, термометры, приборы для лечения и профилактики кожных и простудных заболеваний, сканеры, приборы лазерной хирургии и многое другое.

Инфракрасный пальцевый тонометр

В промышленном оборудовании. Датчики движения и подсчета, дефектоскопы, дальномеры, ИК-уровни и отвесы, устройства передачи информации по оптическим линиям связи, источники для накачки мощных твердотельных лазеров.

Лазерный ИК-светодиод с подключенным к нему оптоволоконным кабелем

Как подключить

Подключение инфракрасного светодиода ничем не отличается от подключения обычного светоизлучающего. И тот, и другой включаются в цепь постоянного тока через ограничивающий резистор, обеспечивающий номинальный рабочий ток прибора. Ну и не стоит забывать, что инфракрасный светодиод – прибор полярный, поэтому на его анод нужно обязательно подавать «плюс», а на катод – «минус». При этом место включения резистора в цепь роли не играет.

Простейшая схема подключения ИК-светодиода

Для того чтобы рассчитать номинал токоограничивающего резистора, необходимо знать:

  • падение напряжения на светодиоде при прямом включении (есть в паспорте);
  • номинальный рабочий ток светодиода (есть в паспорте);
  • величину питающего напряжения.

Сам же расчет исключительно прост. Из напряжения питания вычитаем напряжение падения на полупроводнике и находим напряжение падения на резисторе:

U = Uпит. – Uпадения на светодиоде

Теперь рассчитываем номинал резистора, который обеспечит нужный нам ток через цепь, воспользовавшись законом Ома:

R = U/ I

где:

  • R – искомое сопротивление резистора в Омах;
  • U – падение напряжения на резисторе (см. первую формулу) в вольтах;
  • I – номинальный ток через светодиод в амперах.

Если светодиод относительно мощный, то вместо резистора используется драйвер – электронный стабилизатор тока. Понадобится драйвер и в том случае, если питающее напряжение нестабильно.

Важно! Драйвер должен обеспечивать точно такой же или меньший ток, на который рассчитан конкретный светодиод.

Подключение светодиода через простейший драйвер, собранный на интегральном стабилизаторе

В нижней части рисунка указано соответствие номинала резистора необходимому току.

Как проверить исправность ИК-диода

Осталось научиться проверять исправность ИК-светодиодов. Начнем с самой распространенной в быту поломки – выходу из строя ИК-диодов для пультов ДУ (ПДУ). Как проверить, исправен ли светодиод, не разбирая сам пульт? Ведь излучение таких приборов невидимо для человека. Да, невидимо, но его отлично видят видеокамеры.

Берем смартфон, ставим его в режим фотосъемки, подносим к камере мобильного устройства пульт ДУ, нажимаем на любую кнопку и смотрим на дисплей. Если с пультом все в порядке, то мы увидим, как светодиод начнет мигать.

Проверка ИК-светодиода в пульте ДУ при помощи камеры мобильного телефона

Тот же результат можно получить и при помощи веб-камеры или любой другой видеокамеры с контрольным дисплеем.

Есть и еще один метод проверки инфракрасного светодиода – при помощи мультиметра (тестера). Он очень удобен, если светодиод никуда не впаян. Для этого понадобится любой мультиметр, имеющий режим проверки диодов.

Этот прибор имеет режим проверки диодов

Читайте также  Освещение в бане в парилке светодиодами

Инфракрасный светодиод проверяют следующим образом. Переключают прибор в режим теста диодов (на фото выше обозначен стрелкой) и щупами касаются выводов светодиода сначала в одной полярности, затем в другой. Отметим, что в этом режиме измеряется падение напряжения.

Схема подключения инфракрасного диода к тестеру

В одной из полярностей падение напряжения на переходе излучателя будет намного меньше, а через камеру смартфона мы увидим, как диод засветился.

Если нет мультиметра, то не впаянный в плату светодиод можно зажечь при помощи батарейки-«монетки» (CR2025 или CR2035). Подключаем ИК-светодиод, соблюдая полярность (анод к «плюсу»), а его свечение контролируем при помощи камеры смартфона.Проверка светодиода при помощи батарейки

Можно ли проверить светодиод, не выпаивая его из платы? Можно. Берем мультиметр и проводим те же операции, что и в предыдущем случае. Благодаря токоограничивающему резистору внутренние элементы конструкции не будут влиять на качество проверки.

Вот и вся информация об инфракрасных светодиодах. Теперь мы знаем, что это за приборы, как работают и где используются.

Предыдущая

Источник: https://lampaexpert.ru/svetodiodnaya-lenta/svetodiody/infrakrasnyj-svetodiod

Светодиод инфракрасного спектра излучения

Светодиод инфракрасного спектра излучения

Инфракрасный (ИК) излучающий диод представляет собой полупроводниковый прибор, рабочий спектр которого расположен в ближней области инфракрасного излучения: от 760 до 1400 нм. В интернете часто встречается термин «ИК светодиод», хотя свет, видимый человеческим глазом, он не излучает.

То есть в рамках физической оптики этот термин неверен, в широком же смысле название применимо. Стоит отметить, что во время работы некоторых ИК излучающих диодов можно наблюдать слабое красное свечение, что объясняется размытостью спектральной характеристики на границе с видимым диапазоном.

Не стоит путать ИК светодиоды с лазерными диодами инфракрасного излучения. Принцип действия и технические параметры этих приборов сильно отличаются.

Коротко — об ИК-светодиодах

Светодиодные элементы, как любой  продукт современного высокотехнологичного производства, отличаются разнообразием. Они способны генерировать весь видимый спектр излучений. Инфракрасные светодиоды  работают на нижней границе восприятия человеческого глаза. Эта спецификация влияет на их использование в хозяйственной деятельности.

Потребителю важно знать их основные характеристики, технические и технологические особенности изготовления и применения, тонкости практической работы и перспективы развития направления   в ближайшее время.

Значимые технические характеристики

Инфракрасные светодиоды генерируют волны  в  диапазоне λ = 0,74- 2000 мкм. Это та грань, где деление на свет и излучение довольно условное, ведь эта часть спектра  доступна  не всем людям.

Поэтому классические характеристики  таких устройств, например, мощность светового потока, освещенность, применять для их оценки не совсем удобно. Параметры инфракрасных светодиодов чаще измеряют в мощности генерируемого излучения, то есть в количестве энергии в единицу времени(Ватт) или дополнительно привязывают  к размеру излучателя:- Вт  с  единицы площади.

Вторая характеристика  больше условная, ведь при помощи  оптических систем  излучение собирается и направляется в нужную сторону. Поэтому еще один важный показатель особенностей работы инфракрасных излучателей — это интенсивность излучаемого потока а рамках сегмента объемного угла .Меряется в ваттах и стерадиа́нах , сокращенно  Вт/ср.

Графическое изображение телесного угла в 1 ср

Для некоторых видов деятельности не нужен постоянный поток энергии, поэтому возможны импульсные сигналы. Такая схема позволяет  повысить выходную  мощность излучаемой энергии в разы. Часто в характеристиках ИК-диода выделяют  отдельные показатели  для импульсного и  непрерывного  режимов.

Перспективные направления   усовершенствования инфракрасных светодиодов

Производители  регулярно сталкиваются со следующей проблемой: для создания мощного излучения требуется большой кристалл, но и цена такого кристалла увеличивается. Соединение вместе нескольких маленьких элементов увеличивает нерабочую площадь кристалла, ведь боковое излучение уходит в сторону. Большая мощность излучения требует много энергии, которая, в свою очередь, превращается в тепло. Итогом является повышение температуры  и возникает опасность разрушения рабочей части светодиода.

Ученые и производители предлагают следующие направления решения этих проблем:

  • достигнут психологический порог площади кристалла до 1 мм2 , что дает возможность значительного увеличения силы тока из-за уменьшения сопротивления в результате нагрева.
  • увеличение  площади поверхности кристалла увеличивает соотношение излучаемой площади к непрозрачной части;
  • разрабатываются и внедряются  более совершенные отражатели, имеющие   более высокий КПД сбора и концентрации  излучение от боковых граней;
  • разрабатываются оптические системы с более высоким коэффициентом преломления, позволяющим в оптимальном режиме собирать воедино и  направлять под нужным углом прямое и боковое излучения.

Сферы применения комплектующих элементов на основе инфракрасных светодиодов

Ученые и производственники не зря тратят столько сил на решение обозначенных выше проблем. Как отдельные приборы такие изделия практически не используются. Но они являются основными элементами оборудования, популярность которого растет быстрыми темпами. Именно этот рынок требует светодиоды с все более мощными выходными данными.

В первую очередь речь идет о системах,  связанных с обеспечением работы визуальной техники в темное время суток. Рассмотрим ситуацию на примере приборов ночного видения. Чем мощнее сигнал, тем больше будет расстояние, с которого его отражение вернется для фиксации  на  приемной матрице. Но если в таких приборах еще можно использовать импульсы, то в системах инфракрасной  подсветки видеокамер, где создаётся постоянный видеопоток, нужен непрерывный поток энергии.

Используют инфракрасные светодиоды в системах организации оптической связи, в телевизионных системах с электронно-оптическими преобразователями  на основе пространственно-зарядковой связи,  пультах дистанционного управления. Но эти рынки более узкие и не формируют основной спрос.

Что говорят о таких светодиодах практики?

Сервисные инженеры и ремонтники обращают внимание на прямую связь специфических  характеристик  этих приборов и возникающие проблемы. Большой мощный поток излучения требует много энергии и способствует повышенному выделению тепла. Любой сбой  в организации охлаждения снижает  эффективность работы прибора, вплоть до физического разрушения кристалла.

Для  работы ИК-диодов с узконаправленным потоком излучения  важно состояние оптических систем, формирующих угол направления излучения. Изменение их свойств, даже физическое загрязнение, может  уменьшить потенциал  прибора.

При работе с импульсными системами  необходимо учитывать фактор, что мощность излучения не растет линейно и даже небольшое отклонение напряжения от заданных параметров  помешает светодиоду выдать максимальный результат .И разница будет составлять не проценты, а разы.

Например, для ряда этих устройств, при непрерывном режиме декларируется 4 Вт/ср , а при импульсивном обозначается  до 100 Вт/ср. Поэтому практики советуют уделять пристальное внимание профилактике и минимальному сервисному обслуживанию при эксплуатации таких систем.

Источник: https://1000eletric.com/svetodiod-infrakrasnogo-spektra-izlucheniya/