Светодиод для лазерной указки

Содержание

Лазерные диоды. Виды и подключение. Устройство и работа

Светодиод для лазерной указки

Лазерные диоды — ранее изготовление лазеров было связано с большими трудностями, так как для этого необходим маленький кристалл и разработка схемы для его функционирования. Для простого радиолюбителя такая задача была невыполнимой.

С развитием новых технологий возможность получения лазерного луча в бытовых условиях стала реальностью. Электронная промышленность сегодня производит миниатюрные полупроводники, которые могут генерировать луч лазера. Этими полупроводниками стали лазерные диоды.

Повышенная оптическая мощность и отличные функциональные параметры полупроводника позволяют применять его в измерительных устройствах повышенной точности как на производстве, в медицине, так и в быту. Они являются основой для записи и чтения компьютерных дисков, школьных лазерных указок, уровнемеров, измерителей расстояния и многих других полезных для человека устройств.

Возникновение такого нового электронного компонента является революцией в создании электронных устройств разной сложности. Диоды высокой мощности образуют луч, который используется в медицине при выполнении различных хирургических операций, в частности по восстановлению зрения. Луч лазера способен быстро произвести коррекцию хрусталика глаза.

Лазерные диоды используются в измерительных приборах в быту и промышленности. Устройства изготавливают с разной мощностью. Мощности 8 Вт хватит для сборки в бытовых условиях портативного уровнемера. Этот прибор надежен в работе, способен создать лазерный луч очень большой длины. Попадание лазерного луча в глаза очень опасно, так как на малом расстоянии луч способен к повреждениям мягких тканей.

Устройство и принцип работы

В простом диоде на анод подается положительное напряжение, то речь идет о смещении диода в прямом направлении. Дырки из области «р» инжектируются в область «n» р-n перехода, а из области «n» в область «р» полупроводника. При расположении дырки и электрона рядом друг с другом, то они рекомбинируют и выделяют фотонную энергию с некоторой длиной волны и фонона. Этот процесс получил название спонтанного излучения. В светодиодах он является главным источником.

Но при некоторых условиях дырка и электрон способны находиться перед рекомбинацией в одном месте продолжительное время (несколько микросекунд). Если по этой области в это время пройдет фотон с частотой резонанса, то он вызовет вынужденную рекомбинацию, и при этом выделится второй фотон. Его направление, фаза и вектор поляризации будут абсолютно совпадать с первым фотоном.

Кристалл полупроводника изготавливают в виде тонкой пластинки формы прямоугольника. По сути дела, эта пластинка и играет роль оптического волновода, в котором излучение действует в ограниченном объеме. Поверхностный слой кристалла модифицируется с целью образования области «n». Нижний слой служит для создания области «р».

В конечном итоге получается плоский переход р-n значительной площади. Два боковых торца кристалла подвергают полировке для создания параллельных гладких плоскостей, образующих оптический резонатор. Случайный фотон перпендикулярного плоскостям спонтанного излучения пройдет по всему оптическому волноводу. При этом перед выходом наружу фотон несколько раз будет отражаться от торцов и, проходя вдоль резонаторов, создаст вынужденную рекомбинацию, образуя при этом новые фотоны с такими же параметрами, чем вызовет усиление излучения. Когда усиление превзойдет потери, начнется создание лазерного луча.

Существуют различные типы лазерных диодов. Основные из них выполнены на особо тонких слоях. Их структура способна создавать излучение только параллельно. Но если волновод выполнить широким в сравнении с длиной волны, то он будет функционировать уже в различных поперечных режимах. Такие лазерные диоды называют многодомовыми

Использование таких лазеров оправдано для создания повышенной мощности излучения без качественной сходимости луча. Допускается некоторое его рассеивание. Этот эффект используется для накачки других лазеров, в химическом производстве, лазерных принтерах. Однако при необходимости определенной фокусировки луча, волновод должен выполняться с шириной, сравнимой с длиной волны.

В этом случае ширина луча зависит от границ, которые наложены дифракцией. Такие приборы используются в запоминающих оптических устройствах, оптоволоконной технике, лазерных указателях. Необходимо заметить, что эти лазеры не способны поддержать несколько продольных режимов, и излучать лазерный луч на разных длинах волн в одно время. Запрещенная зона между уровнями энергии «р» и «n» областей диода влияет на длину волны луча.

Лазерный луч на выходе сразу расходится, так как излучающий компонент очень тонкий. Чтобы компенсировать это явление и создать тонкий луч, используют собирающие линзы. Для широких многодомовых лазеров используются цилиндрические линзы. В случае однодомовых лазеров, при применении симметричных линз, лазерный луч будет иметь эллиптическое поперечное сечение, так как вертикально расхождение превосходит размер луча в горизонтальной плоскости. Наглядным примером для этого служит лазерная указка.

В рассмотренном элементарном устройстве нельзя выделить определенную длину волны, кроме волны оптического резонатора. В устройствах, имеющих материал, способный усилить луч в большом интервале частот, и с несколькими режимами, возможно действие на разных волнах.

Обычно лазерные диоды функционируют на одной волне, обладающей, однако значительной нестабильностью, и зависящей от различных факторов.

Разновидности

Устройство рассмотренных выше диодов имеет n-р структуру. Такие диоды имеют низкую эффективность, требуют значительную мощность на входе, и работают только в режиме импульсов. По-другому они работать не могут, так как быстро перегреются, поэтому не получили широкого применения на практике.

Лазеры с двойной гетероструктурой имеют слой вещества с узкой запрещенной зоной. Этот слой находится между слоями материала, у которого широкая запрещенная зона. Обычно для изготовления лазера с двойной гетероструктурой применяют арсенид алюминия-галлия и арсенид галлия. Каждыи из этих соединений с двумя разными полупроводниками получили название гетероструктуры.

Достоинством лазеров с такой особенной структурой является то, что область дырок и электронов, которую называют активной областью, находится в среднем тонком слое. Следовательно, что создавать усиление будут намного больше пар дырок и электронов. В области с малым усилением таких пар останется мало. В дополнение свет станет отражаться от гетеропереходов. Другими словами излучение будет полностью находиться в области наибольшего эффективного усиления.

Диод с квантовыми ямами

При выполнении среднего слоя диода более тонким, он начинает функционировать в качестве квантовой ямы. Поэтому электронная энергия будет квантоваться вертикально. Отличие между уровнями энергии квантовых ям применяется для образования излучения вместо будущего барьера.

Это эффективно для управления волной луча, зависящей от толщины среднего слоя. Такой вид лазера намного эффективнее, в отличие от однослойного, так как плотность дырок и электронов распределена более равномерно.

Гетероструктурные лазерные диоды

Основной особенностью тонкослойных лазеров является то, что они не способны эффективно удерживать луч света. Для решения этой задачи по обеим сторонам кристалла прикладывают два дополнительных слоя, которые обладают более низким преломлением, в отличие от центральных слоев. Подобная структура похожа на световод. Она намного лучше удерживает луч. Это гетероструктуры с отдельным удержанием. По такой технологии произведено большинство лазеров в 90-х годах.

Лазеры с обратной связью в основном применяют для волоконно-оптической связи. Для стабилизации волны на р-n переходе выполняют поперечную насечку для создания дифракционной решетки. Из-за этого в резонатор возвращается и усиливается только одна длина волны. Такие лазеры имеют постоянную длину волны. Она определена шагом насечки решетки. Под действием температуры насечка изменяется. Подобная модель лазера является основой телекоммуникационных оптических систем.

Существуют также лазерные диоды VСSЕL и VЕСSЕL, которые являются поверхностно-излучающими моделями с вертикальным резонатором. Их отличие состоит в том, что у модели VЕСSЕL резонатор внешний, и его конструкция бывает с оптической и токовой накачкой.

Особенности подключения

Лазерные диоды используются во многих устройствах, где необходим направленный световой луч. Основным процессом в сборке устройства с применением лазера своими руками является правильное подключение.

Читайте также  Освещение на складе светодиодами

Лазерные диоды отличаются от led диодов миниатюрным кристаллом. Поэтому в нем концентрируется большая мощность, а следовательно и величина тока, что может привести к выходу его из строя. Для облегчения работы лазера существуют особые схемы устройств, которые называются драйверами.

Лазерам необходимо стабильное питание. Однако существуют их модели, имеющие красное свечение луча, и функционирующие в нормальном режиме даже с нестабильной сетью. Если имеется драйвер, то все равно диод нельзя подключать напрямую. Для этого дополнительно нужен датчик тока, роль которого часто играет резистор, подключенный между этими элементами.

Такое подключение имеет недостаток в том, что отрицательный полюс питания не соединен с минусом схемы. Другим недостатком является падение мощности на резисторе. Поэтому перед подключением лазера необходимо тщательно подобрать драйвер.

Виды драйверов

Существуют два главных вида драйверов, способных обеспечить нормальный режим эксплуатации лазерных диодов.

Импульсный драйвер выполнен по аналогии импульсного преобразователя напряжения, способного повышать и понижать этот параметр. Мощности выхода и входа такого драйвера примерно равны. Однако, существует некоторое выделение тепла, на которое расходуется незначительное количество энергии.

Линейный драйвер действует по схеме, которая чаще всего подает напряжение на диод больше, чем требуется. Для его снижения необходим транзистор, преобразующий излишнюю энергию в теплоту. Драйвер имеет малый КПД, поэтому не нашел широкого применения.

При применении линейных микросхем в качестве стабилизаторов, при уменьшении напряжения на входе диодный ток будет снижаться.

Так как питание лазеров выполняется двумя видами драйверов, схемы подключения имеют отличия.

Схема также может содержать источник питания в виде батареи или аккумулятора.

Аккумуляторы должны выдавать напряжение 9 вольт. Также в схеме должен быть резистор, ограничивающий ток, и лазерный модуль. Лазерные диоды можно найти в неисправном приводе дисков от компьютера.

Лазерный диод имеет 3 вывода. Средний вывод подключается к минусу (плюсу) питания. Плюс подключается к правой, либо левой ножке, в зависимости от фирмы изготовителя. Чтобы определить нужную ножку для подключения, необходимо подать питание. Для этого можно взять две батарейки по 1,5 В и сопротивление 5 Ом. Минус источника подключают к средней ножке диода, а плюс сначала к левой, затем к правой ножке. Путем такого эксперимента можно увидеть, какая из этих ножек является «рабочей». Таким же методом диод подключают к микроконтроллеру.

Лазерные диоды могут работать от пальчиковых батареек, аккумулятора сотового телефона. Однако нельзя забывать, что дополнительно требуется ограничивающий резистор номиналом 20 Ом.

Подключение к бытовой сети

Для этого нужно обеспечить вспомогательную защиту от всплесков напряжения высокой частоты.

 

Стабилизатор и резистор создают блок предотвращающий перепады тока. Для выравнивания напряжения применяют стабилитрон. Емкость предотвращает возникновение скачков напряжения высокой частоты. При правильной сборке обеспечивается стабильная работа лазера.

Порядок подключения

Наиболее удобным для работы будет красный диод мощностью около 200 мВт. Такие лазерные диоды установлены на дисковые приводы компьютеров.

  • Перед подключением с помощью батарейки проверить работу лазерного диода.
  • Выбрать необходимо самый яркий полупроводник. Если диод взят из дискового привода компьютера, то он светит инфракрасным светом. Луч лазера запрещается наводить на глаза, так как это приведет к повреждению глаз.
  • Диод монтировать на радиатор для охлаждения, в виде алюминиевой пластины. Для этого предварительно сверлить отверстие.
  • Между диодом и радиатором промазать термопастой.
  • Резистор на 20 Ом и 5 ватт подключить по схеме с батарейками и лазером.
  • Диод шунтировать керамическим конденсатором любой емкости.
  • Отвернуть от себя диод и проверить его работу, подключив питание. Должен появиться красный луч.

При подключении следует помнить о безопасности. Все соединения должны быть качественными.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/lazernye-diody/

500 лазерных указок в одно место

Светодиод для лазерной указки

Привет, Хабр. В этой статье я расскажу о своём недавнем творении, созданном из 500 лазерных модулей по типу дешёвых маломощных лазерных указок. Под катом много кликабельных картинок.
Внимание! Даже маломощные лазерные излучатели при определённых условиях могут причинить вред здоровью или повредить фототехнику. Не пытайтесь повторить описанные в статье эксперименты.

Примечание. На есть моё видео, в котором можно увидеть больше. Однако статья более детально расписывает процесс создания и тут качественнее картинки (особенно при клике).

Лазерные модули

Начну с описания самих лазерных модулей. Их сейчас продаётся очень много разных вариантов, различающихся между собой длиной волны, мощностью и формой выходного излучения, конструкцией оптической системы и крепления, а также качеством сборки и ценой. Я выбрал наиболее дешёвые модули, продающиеся в Китае партиями по 100 штук стоимостью около 1000 руб за партию. По описанию продавца они выдают 50 мВт на длине волны 650 нм. Насчёт 50 мВт сомневаюсь, скорее всего там нет и 5 мВт.

Несколько подобных модулей я купил в России по цене 30 руб за штуку. В интернет-магазинах они встречаются под названием LM6R-dot-5V. Светят как красные лазерные указки, продающиеся в разных вариациях в любом ларьке с безделушками. Конструктивно этот модуль выглядит как металлический цилиндр диаметром 6 мм и длиной 14 мм (вместе с платой). Материал корпуса, скорее всего, сталь, так как имеет хорошие магнитные свойства. Корпус соединён с плюсовым контактом.

Внутри корпуса находится пластиковая линза и лазерный чип, установленный на небольшой печатной плате. Также на плате находится резистор, номинал которого зависит от заявленного напряжения питания. Я использовал модули на 5В с резистором 91 Ом. При входном напряжении 5В на модуле, напряжение на лазерном чипе составляет 2.4В, при этом ток получается 28 мА. Конструкция полностью открыта со стороны платы, так что любая пыль или влага легко попадают внутрь. Поэтому заднюю часть каждого модуля я заклеивал термоклеем.

Кроме того, чип и линза устанавливаются не точно, поэтому выходное излучение может быть не параллельным оси корпуса. При работе модуль разогревается до температуры 35-40°С.

Первоначальный вариант

Первоначально (это было год назад) я купил 200 лазерных модулей и решил их направить в одну точку чисто геометрическим методом, то есть не подстраивая каждый модуль индивидуально, а устанавливая каждый излучатель в специальные вырезы. Для этого я заказал специальные крепления из фанеры толщиной 4 мм. Лазерные модули прижимал к вырезу и приклеивал термоклеем. Получилась установка, которая давала пучок из 200 лазерных точек в диаметре около 100 мм.

Хотя результат был далёк от попадания в одну точку, многих впечатлила эта идея (я выкладывал видео на ) и было решено продолжить тему. Систему из 200 лазерных модулей я разобрал и сделал из них лазерную гирлянду. Получилось интересно, но не удобно, так как под тяжестью корпуса все лучи направлялись вниз. Зато к этому времени я купил дым-машину и впервые увидел как круто смотрятся эти лазеры в тумане.

Решил повторить первоначальную идею, но уже вручную направлять каждый лазер в одну точку.

Лазерный светильник

Для нового варианта я заказал ещё 300 лазерных модулей. В качестве крепления изготовил квадратную пластину со стороной 440 мм из фанеры толщиной 6 мм с матрицей отверстий 25 строк и 20 столбцов. Диаметр отверстий 5 мм. Позже я покрасил её в серебристый цвет. Для крепления пластины использовал стойку от старого ЖК-монитора. Пластину я закрепил в тиски, а на расстоянии 1350 мм (длина моего стола) повесил бумажную мишень размером 30х30 мм, в центр которой направлял каждый лазерный луч. Процесс вклейки лазерного модуля выглядел следующим образом.

Я вставлял провода модуля в отверстие и подключал к ним крокодилы с питающим напряжением. Далее заливал термоклеем корпус модуля и отверстие в пластине. Под пластиной лежал вентилятор для ускоренного остывания клея. Поскольку клей застывает медленно, я мог спокойно подправлять положение модуля, ориентируясь на положение лазерной точки на мишени. В среднем у меня уходило 3.5 минуты на один лазерный модуль. Использовать термоклей удобно, так как его можно подогреть и подправить модуль. Однако, есть два минуса.

Во-первых, нагрев модулей приводил к деформации конструкции модуля, что выражалось в расширении лазерного пучка. Некоторые модули резко потеряли яркость от нагрева и их пришлось заменить. Во-вторых, после остывания термоклей в течение нескольких часов продолжал деформироваться и немного уводить лазерный луч в произвольную сторону. Последний фактор заставил изменить первоначальное название проекта «500 лазерных указок в одну точку». Поскольку работа велась лишь иногда по вечерам и по выходным, на вклеивание всех 500 лазерных модулей ушло около трёх месяцев.

С учётом доставки модулей и пластины будет полгода. Для особого эффекта к лазерным модулям добавил синие светодиоды. Обеспечить питание всем модулям задача не простая, ведь нужно соединить 1000 контактов и равномерно распределить ток. Все 500 плюсовых контактов я соединил в одну цепь. Минусовые контакты я разделил на 10 групп. На каждую группу назначил свой тумблер. В будущем для включения групп я собираюсь добавить 10 электронных ключей, управляемых микроконтроллером под музыку.

Читайте также  Фонарь на мощном светодиоде своими руками

Для питания всех модулей я приобрёл источник постоянного напряжения Mean Well LRS-350-5, который выдаёт напряжение 5В с током до 60А. Он имеет небольшие размеры и удобный клеммник для подключения нагрузки.

Итоговая схема со всеми включенными лазерными модулями имеет потребление около 14 ампер. На рисунке ниже показано расположение всех лазерных точек на мишени. Как видно, я почти уложился в «одно место» размером 30х30 мм. Одно пятно за пределами мишени появилось из-за одного модуля, имеющего побочное боковое излучение. Полученное устройство выглядит не очень симпатично, но вся его красота проявляется в темноте и тумане. Я пробовал на ощупь место пересечения лучей. Тепло ощущается, но не сильное. И даже направлял камеру прямо на излучатели (сам я использую защитные очки зелёного цвета). Было очень интересно использовать зеркала и линзы.

Позже я добавил возможность модуляции лазерных модулей аудиосигналом и получилась своеобразная музыкальная лазерная установка. Посмотреть на неё можно в моём видео на .

Этот проект исключительно для досуга и его результаты меня порадовали. На данный момент я не ставлю перед собой таких же трудоёмких задач, но в будущем наверняка придумаю что-нибудь ещё. Надеюсь, вам тоже было интересно.

Спасибо за внимание!

  • самоделка
  • лазеры
  • освещение
  • эксперимент

Источник: https://habr.com/ru/post/428513/

Разновидности виды типы лазеров и указок

Светодиод для лазерной указки

МАГАЗИН УНИКАЛЬНЫХ ТОВАРОВ — WWW.MAGNETIK.COM.UA

Тел: +38 095-227-27-52, 067-864-48-25, 093-815-74-28

Режим работы с 08.00 до 20.00

E-MAIL: edik4928@gmail.com

VIBER: 095-227-27-52 (консультации, фото, заказы)

MaGnetik.com.ua — на сегодня существует много видов лазеров и указок.

Ранние модели лазерных указок использовали гелий-неонные (HeNe) газовые лазеры и излучали в диапазоне 633 нм. Они имели мощность не более 1 мВт и были очень дорогими. Сейчас лазерные указки используют менее дорогие красные диоды с длиной волны 650-670 нм.

Указки чуть подороже используют оранжево-красные диоды 635 нм, которые делают их более яркими для глаз, так как человеческий глаз видит свет с 635 нм лучше чем свет с 670 нм. Лазерные указки других цветов также производятся. Например зеленая указка 532 нм хорошая альтернатива красной 635 нм.

Человеческий глаз чувствительнее к зелёному свету ~ в 6000 раз по сравнению с красным светом. В последнее время набирают популярность на западе желто-оранжевые указки с 593.5 нм и синие лазерные указки с 473 нм.

Красные (инфракрасные) лазерные указки

Распространенный тип лазерных указок. В этих указках используется обычный лазерный диод красного цвета с линзой и небольшая плата для управления питанием. Для данных лазерных указок достаточно питания от обычных батареек-таблеток.

Зеленые лазерные указки

Зеленые лазерные указки начали продаваться в 2000 году. Это самый распространенный тип твердотельных с диодной накачкой (DPSS) лазеров. Лазерные диоды зелёного цвета не производятся, поэтому используется другая схема. Устройство намного сложнее, чем у обычных красных указок, и зелёный свет получают довольно громоздким способом. Сначала мощным (обычно >100 мВт) инфракрасным лазерным диодом с 808 нм накачивается кристалл ортованадата иттрия с неодимовым легированием (Nd:YVO4), где излучение преобразуется в 1064 нм.

Потом, проходя через кристалл титанила-фосфата калия (KTiOPO4, сокр. KTP), частота излучения сдваивается (1064 нм -> 532нм) и получается видимый зелёный свет. КПД схемы ~20%, большая часть приходится на комбинацию 808 и 1064 нм ИК. На мощных указках >50 мВт нужно устанавливать инфракрасный фильтр (IR-фильтр, голубоватая пластинка 3*3*1 мм) чтобы убрать остатки ИК-излучения и избежать повреждения зрения. Также стоит отметить прожорливость зелёных лазеров. По этой причине непросто найти указки-брелки на батарейках-таблетках.

Синие (индиго, фиолетовые) лазерные указки

Синие лазерные указки появились в 2006 году и имеют схожий с зелёными лазерными указками принцип работы. 473 нм свет обычно получают путем удвоения частоты 946 нм лазерного излучения. Для получения 946 нм используется кристалл алюмо-иттриевого граната с добавками неодима (Nd:YAG). КПД низкий ~3%, сами лазеры очень дорогие. Также производятся голубые лазерные диоды. Они имеют длину волны 405 нм, заметно тусклее 473 нм лазеров и имеют фиолетовый оттенок (вплоть до ультрафиолетового).

 Желтые (оранжевые) лазерные указки

В желтых лазерных указках 808нм луч конвертируется в 1064нм луч, далее 1064 луч конвертируется в 1342нм луч и только потом сдваивается в 593.5нм луч. КПД желтых лазеров составляет около 1%.

В основе полупроводниковых лазеров используются полупроводниковые диоды. Их работа основана на возникновении инверсии населённостей в области p-n перехода при инжекции носителей заряда.

Когда на анод обычного диода подаётся положительный потенциал, то говорят, что диод смещён в прямом направлении. При этом дырки из p-области инжектируются в n-область p-n перехода, а электроны из n-области инжектируются в p-область полупроводника. Если электрон и дырка оказываются «вблизи» (на расстоянии, когда возможно туннелирование), то они могут рекомбинировать с выделением энергии в виде фотона определённой длины волны (в силу сохранения энергии) и фонона (в силу сохранения импульса, потому что фотон уносит импульс). Такой процесс называется спонтанным излучением и является основным источником излучения в светодиодах.

В лазерном диоде полупроводниковый кристалл изготавливают в виде очень тонкой прямоугольной пластинки. Такая пластинка, по сути, является оптическим волноводом, где излучение ограничено в относительно небольшом пространстве. Верхний слой кристалла легируется для создания n-области, а в нижнем слое создают p-область. В результате получается плоский p-n переход большой площади. Две боковые стороны (торцы) кристалла полируются для образования гладких параллельных плоскостей, которые образуют оптический резонатор, называемый резонатором Фабри-Перо.

Случайный фотон спонтанного излучения, испущенный перпендикулярно этим плоскостям, пройдёт через весь оптический волновод и несколько раз отразится от торцов, прежде чем выйдет наружу. Проходя вдоль резонатора, он будет вызывать вынужденную рекомбинацию, создавая новые и новые фотоны с теми же параметрами, и излучение будет усиливаться (механизм вынужденного излучения). Как только усиление превысит потери, начнётся лазерная генерация.

Лазерные диоды могут быть нескольких типов. У основной их части слои сделаны очень тонкими, и такая структура может генерировать излучение только в направлении, параллельном этим слоям. С другой стороны, если волновод сделать достаточно широким по сравнению с длиной волны, он сможет работать уже в нескольких поперечных режимах. Такой диод называется многомодовым.

С другой стороны, если требуется хорошая фокусировка луча, ширина волновода должна изготавливаться сравнимой с длиной волны излучения. Здесь уже ширина луча будет определяться только пределами, накладываемыми дифракцией. Такие устройства применяются в оптических запоминающих устройствах, лазерных целеуказателях, а также в оптоволоконной технике.

Следует, однако, заметить, что такие лазеры могут поддерживать несколько продольных режимов, то есть могут излучать на разных длинах волн одновременно.

Длина волны излучения лазерного диода зависит от ширины запрещённой зоны между энергетическими уровнями p- и n-областей полупроводника.

В связи с тем, что излучающий элемент достаточно тонок, луч на выходе диода, благодаря дифракции, практически сразу расходится. Для компенсации этого эффекта и получения тонкого луча необходимо применять собирающие линзы. Для многомодовых широких лазеров наиболее часто применяются цилиндрические линзы. Для одномодовых лазеров, при использовании симметричных линз, сечение луча будет эллиптическим, так как расхождение в вертикальной плоскости превышает расхождение в горизонтальной.

Рекомендуемые модели лазеров

Разнообразные способы применения лазерных указок в реальной жизни. Лазерные указки — вопросы и ответы.

Теоретические основы полупроводниковых лазеров. Разнообразие цветов лазерных указок.

Классы опасности лазеров и лазерных указок. Опасность лазерного излучения для человека и зрения.

Техника безопасности при работе с лазерными указками и лазерами. Лазерный терроризм и запреты лазеров.

Демонстрация работы указок

Подборка интересных видеороликов о лазерных указках — прожигающие способности, мощности, красота!

ВИДЕО ПРО ЛАЗЕРЫ

Длина волны — 532нм(зеленый)

Мощность — < 1000 mW

Питание — аккумулятор 18650

Класс — IV Laser product

1000mW зеленый — 400 грн.

Длина волны — 450нм (синий)

Мощность — < 10000 mW (10W)

Питание — аккумулятор 16340

Класс — IIIa Laser product

Источник: https://www.magnetik.com.ua/raznovidnosti-lazernyh-ukazok.html

Светодиод для лазерной указки

Светодиод для лазерной указки

Под термином «лазерный диод» понимается лазер полупроводникового типа, основа конструкции которого представлена диодом. Принцип работы такого лазера строится на том, что после того, как в диод были инжектированы носители заряда в зоне p-n — перехода возникает инверсия населённостей.

Принцип работы лазерного диода

Всегда необходимо помнить, что при формировании излучения больше важен не ток лазерного диода, а напряжение. В момент подачи на анодный конец диода положительного потенциала, наблюдается смещение диода по прямому направлению.

Это подразумевает инжекцию дырок из p-области в n-область и аналогичную инжекцию электронов в обратном направлении. Расположение электрона и дырки в достаточной близости для проявления эффекта туннелирования делает возможной их рекомбинацию.

Читайте также  Отличие драйвера от блока питания для светодиодов

Данное действие сопровождается образованием:

  • Фотонов, имеющих определённую длину волны (результат принципа сохранения энергии);
  • Фононов (компенсируют забираемые фотонами импульсы).

Явление носит название спонтанного излучения и применительно к светодиодам считается главным методом создания излучения.

Рис 1  Конструкция лазерного диода.

Если рекомбинирование электрона и дырки, несмотря на общую пространственную область, не происходит весьма долго. Пересечение этой области фотоном с резонансной частотой провоцирует процесс вынужденной рекомбинации, результатом которой становится формирование другого фотона, полностью совпадающего с первым по всем значимым параметрам.

Особенности конструкции

Кристалл полупроводника лазерного диода представляет собой весьма тонкую прямоугольную пластинку. Деление на p и n области здесь происходит по принципу не лево-право, а верх-низ. То есть, вверху расположена p-область, а внизу — n-область.

Как результат: площадь p-n — перехода достаточно велика. Для торцевых (боковых) сторон обязательна полировка, поскольку формирование оптического резонатора (Фабри-Перо) требуются наличие параллельных плоскостей абсолютной гладкости. Перпендикулярно направленный в отношении одной из таких плоскостей случайный фотон (сформированный спонтанным излучением) будет двигаться по всему оптическому волноводу, периодически отражаясь от боковых граней, пока наконец не покинет резонатор.

Во время движения этот фотон станет причиной нескольких актов вынужденной рекомбинации, формирования подобных фотонов и усиления излучения. В момент, когда усиление достаточно для перекрытия потерь, происходит лазерная генерация.

Разновидности лазерных диодов

  • P-n гомоструктурный диод.

В большинстве случаев слой лазерного диода весьма тонок и генерация фотонового потока происходит параллельно структуре этого слоя. Однако, при конструкции достаточной ширины, диод может функционировать в поперечном варианте. Это многомодовые диоды, и их использование демонстрирует высокую мощность излучения в комбинации с высокой его расходимостью.

С целью обеспечения лучшей фокусировки по ширине волновод должен сопоставляться с длиной волны излучения.

Ввиду малой толщины излучающего элемента и дифракции наблюдается сильное расхождение луча в момент выхода. Компенсировать данный эффект можно при помощи собирающих линз. В случае с многомодовыми лазерами обычно используют линзы цилиндрического типа. А если для стандартного лазера применить симметричные линзы, то луч в сечении приобретёт форму эллипса поскольку в вертикальном направлении луч расходится сильнее, чем в горизонтальном.

Лазерный диоды данного типа не отличаются эффективностью. Для их работы применяется большая входная мощность и импульсное воздействие (позволяющее избежать перегрева). В производстве они практически не используются.

  • Лазерный диод с двойной гетероструктурой (ДГС).

Особенностью диодов данного типа является то, что в них кристаллический слой, имеющий более узкую запрещённую зону, фиксируется между двух кристаллических слоёв, имеющих более широкую запрещённую зону.

Большим плюсом моделей данного типа является увеличение активной области (распространяющуюся практически на весь средний слой) и усиление потока фотонов (благодаря дополнительному отражению света от гетеропереходов).

  • Лазерный диод с квантовыми ямами.

При более сильном истончении среднего слоя в диодах ДГС-типа, его свойства изменяются таким образом, что он превращается в квантовую яму. Таким образом по вертикали электронная энергия будет подвергаться квантованию.

Рис 2 Лазерный диод — вид разрезе

Разность энергетических уровней квантовых ям может быть использована излучения взамен возможного барьера. Это позволяет регулировать длину волны при излучении, определяемую толщиной среднего слоя. Более эффективный вариант ввиду равномерности распределения электронов и дырок.

  • Лазерный диод с гетероструктурой и раздельным удержанием

Гетероструктурные лазеры с тонким слоем имеют один весомый недостаток — они не в состоянии эффективно удерживать свет. Для разрешения проблемы к двум сторонам кристалла крепится по дополнительному слою. По коэффициенту преломления эти слои уступают центральным. Общая конструкция при этом становится подобна световоду. Наибольший процент лазерных диодов сформирован по данной технологии.

  • Лазерные диоды с распределением обратной связи (РОС).

Лазеры РОС-типа применяются для многочастотных волоконно-оптических связей. При помощи поперечной насечки в области p-n — перехода, необходимой для формирования дифракционной решётки, становится возможной стабилизация длины волны. Конкретное её значение зависит от параметров насечки, однако возможны некоторые деформации под действием температурных всплесков. Лазеры данного типа применяются преимущественно для телекоммуникаций и оптики.

Лазер поверхностного излучения, снабжённый вертикальным резонатором. Это означает, что свет будет направлен перпендикулярно относительно грани кристалла, в то время как лазеры других типов излучают свет параллельно кристаллу.

Аналогичен по свойствам предыдущему варианту, но оснащён внешним резонатором.

Драйвер для лазерного диода

Выходная оптическая мощность лазерного диода (являющая одной из основных оптических характеристик) находится в зависимости от тока, проходящего по p-n — переходу. Ввиду этого драйвер лазерного диода обязательно должен соотноситься с источником тока. Все характеристики относящиеся к источнику тока отражаются на параметрах оптической мощности.

В сферу «обязанностей» драйвера входит не только регулировка мощности, но и терморегуляция, осуществляемая через охладитель. Конструкция управляющего блока при этом может быть как совмещённой, так и раздельной.

Рис з Схема простейшего  драйвера лазерного диода

Как подключить лазерный диод

Питать лазерный диод можно при помощи:

  1. Батарей;
  2. Аккумуляторных источников питания;
  3. Стационарных сетей на 220 В (при соответствующей защите от перепадов тока и напряжения).

Подключение лазерного диода к сети на 220 вольт опасно выбросами напряжения и высокочастотными всплесками. Чтобы обеспечить в защиту при данном варианте, потребуется конструкция, включающая в себя:

  • Стабилизатор напряжения;
  • Конденсатор;
  • Токоограничивающие резисторы;
  • Лазерный диод.

При использовании всех приведённых компонентов можно гарантировать безопасность эксплуатации диода.

Рис 4 Одно из подключений лазерного диода

Излучение с какой длиной волны может производить лазерный диод?

Единица измерения длины волны, которую может продуцировать лазерный диод — нм, иначе «нанометры». Благодаря этому значению можно определить цветовой спектр испускаемого светового луча:

Поток фотонов красного цвета наиболее часто используется в конструкциях дисководов. При дневном свете луч этого лазера виден не очень хорошо, но причина этому только невосприимчивость человеческого зрения. При мощности от 20-50 мВт и фокусировки светового пятна в минимально возможную по площади точку проявляется эффект «жжения». Мощность на 200 мВт при правильной фокусировке позволяет резать бумагу различной плотности.

Зелёный поток. Лазеры данного типа очень хрупки и чувствительны к температурным всплескам, требуют крайне осторожного обращения. К тому же обладают сложным устройством и до недавнего времени были крайне дорогими.

Главный положительный момент их применения: зрительно излучение на 532 нм наиболее хорошо различимо. Поэтому использовать лазер зелёного цвета мощнее, чем на 5мВт будет небезопасно для зрения. Кроме того, в силу особенностей конструкции вместе с зелёным спектром лазер поставляет и инфракрасный с длиной волны на 808 нм и 1064 нм, а это только повышает травмоопасность такого прибора. Правда в более дорогих экземплярах стоят специальные фильтры, но это обязательно нужно проверять.

Фиолетовое излучение. Опасно тем, что слабо различимо для человеческого глаза и кажется слабым по мощности, хотя на деле ситуация строго противоположная. Его трудно сфокусировать. В общем, в целях эксплуатации не самый удобный вариант. Может быть актуален разве что при работе с фоторезисторами.

Инфракрасное излучение. Опасно в силу того, что не воспринимается человеческим зрением от слова совсем. А это грозит различными травмами зрения. Работа возможна только при отсутствии инфракрасного фильтра, что обеспечит хотя бы относительную видимость луча.

Излучение также инфракрасное с надбавкой CO2. Наиболее широко применяется в промышленности. Подобные лазеры имеют низкую стоимость, высокую мощность и отличаются высоким КПД. Используются данные лазерные диоды для резки металла или фанеры. С их помощью выполняется гравировка.

Источник: https://elektronchic.ru/elektronika/lazernyj-diod.html

Лазерные диоды или как делают мощные лазерные светильники

Несколько десятилетий яркий лазерный свет украшал концерты, спортивные мероприятия и прочие шоу. Между тем за картинкой зрелищ всегда оставались технологические ограничения. Лазерный луч обладал способностями освещать только одну точку за момент времени и никогда в белом свете.

Более того, световые узоры, созданные лазерным лучом, изобиловали постоянно меняющимся и несколько жутким феноменом интерференционной картинки. Однако технологии сделали своё дело. Недавние достижения в области полупроводниковых лазеров открыли более широкий спектр применения.

Усовершенствованный лазерный диод теперь доступен и для точной подсветки фасадов зданий и для автомобильных фар дальнего света.

Лазерные диоды – суть и практика света

Лазерные диоды следует рассматривать «близкими родственниками» светоизлучающих диодов (LED – Light Emitting Diodes). Конструкция светодиодов содержит диоды или микросхемы, выполненные на основе двух терминальных полупроводниковых элементов.

Этими полупроводниками осуществляется преобразование потока электрической энергии в луч света и цвета определенной длины волны. Гамма цвета, в свою очередь, зависит от применяемого сочетания терминальных полупроводников.

Выпускаются белые светодиоды, где от чипа синего луч направляется на фосфорно-химическую основу. В результате поглощения синего света, прибор начинает излучать желтый свет. Излучение жёлтого люминофора и синего светодиода объединяют и таким образом получают свет, воспринимаемый глазами человека как белый.

Возможности лазерного диода

Лазерные диоды оснащены двумя зеркалами на противоположных концах полупроводника. Одно из зеркал имеет частичную прозрачность, подобно двухстороннему зеркалу.

Источник: https://1000eletric.com/svetodiod-dlya-lazernoy-ukazki/