Соединение конденсаторов для увеличения емкости

Содержание

Соединение конденсаторов для увеличения емкости

Соединение конденсаторов для увеличения емкости

Умельцы, собирая прибор, часто задумываются, как соединить конденсаторы параллельным или последовательным соединением. Далеко не любой номинал выпускается промышленностью, задача обеспечить конструкцию связкой ёмкостей встречается повсеместно.

При параллельном включении номиналы складываются, а при последовательном используется более сложная формула. Вдобавок конденсаторы бывают подстроечными, подобные совершенно точно включаются в цепи, где требуется обеспечить нужные резонансные характеристики.

И тоже требуется решить указанную выше задачу.

Последовательные и параллельные соединения конденсаторов

При параллельном соединении конденсаторов их ёмкости складываются. Несложно посчитать нужный номинал. Допустим, требуется 7 мкФ, но промышленность подобные конденсаторов не выпускает. Зато присутствуют на 6,8 мкФ и 200 нФ. Их сложением образуется связка в искомые 7 мкФ. Заводские номиналы специально выбраны так, чтобы создать любые значения.

Когда применяется последовательное соединение конденсаторов, результирующее значение номинала определяется как произведение ёмкостей, делённое на их сумму. К примеру, если поставить друг за другом две одинаковые ёмкости, суммарный конденсатор заработает номинал, равный половине исходных. Когда складываются различные конденсаторы, больший вклад вносит именно меньший. Бессмысленно последовательно соединять мощные ёмкости со слабыми. Конденсаторы, идущие друг за другом, по номиналу выбираются приблизительно равноценные.

Детали соединения

Возникает вопрос – зачем использовать последовательное соединение. В физике часто рассматривается тема, но не говорится, зачем уменьшать ёмкость конденсаторов. Ведь цена конструкции от этого увеличивается, массу сложностей представляет расчёт режима. Причина в практической стороне. В обзорах уже писали, что рабочее напряжение конденсатора сильно зависит от типа диэлектрика и толщины его слоя. Повысить указанный параметр проблематично.

Тогда требуется составить последовательное соединение конденсаторов, при котором напряжение между ними разделится пропорционально номиналам ёмкостей: чем меньше фарад, тем больше приложится. Импеданс элементов находится по формуле R =j 1/W C, где W – круговая частота цепи (f х 2 П; 6,28 f). Литера j означает, что сопротивление ёмкости переменному току носит мнимый характер (хотя, в отличие от идеала, считается комплексным числом из-за потерь на обкладках и прочих явлений).

Рассмотрим, как проявится конденсатор в цепи постоянного тока. Ёмкости заполнятся зарядами, а напряжение поделится между элементами, обратно пропорционально ёмкостям составляющих цепь элементов. Представьте ситуацию, когда разница потенциалов в цепи явно превышает рабочую. Потребуется набрать последовательную цепь из конденсаторов с пониженным рабочим напряжением, пожертвовав величиной ёмкости.

Порой выгодным оказывается смешанное соединение конденсаторов. Допустим, часть номинала набрать параллельным включением, а остальные элементы предназначены для работы с более низким напряжением. Тогда пробуем набрать из последних последовательную ветку нужного размера в фарадах.

Ряды номиналов ёмкостей конденсаторов

Известны ряды стандартных номиналов конденсаторов: Е3, Е6, Е12, Е24. После войны 45-го года, когда страны сели за стол переговоров, выяснилось, что у собеседников присутствует два основных стандарта на ряду ёмкостей. Смысл заключался в возможности набрать любой номинал из составляющих путём параллельного соединения.

Оказалось, что это делается двумя способами:

  1. Взять ряды, где любое значение равняется корню десятой степени из возведённой в некоторую степень десятки. Такой ряд пропорционален единому значению: корню десятой степени из десятки.
  2. Второй ряд использовал аналогичные соотношения, но корень брался в двенадцатой степени. Поясним с точки зрения математики. Стандартно обращаемся к квадратному корню. Что соответствует степени 2. К примеру, корень из 9 равняется 3. Кубический корень — число, возводимое в третью степень, чтобы вышло подкоренное выражение. К примеру, кубический корень из 27 также равняется 3.

Теперь читатели понимают, что ряды стандартных номиналов конденсаторов сложны. Итак, выяснилось, что часть стран уже использует вторую методику, но теоретически большую выгоду несёт первая. В угоду неким условиям решили применять именно корень двенадцатой степени. Туда входит ряд конденсаторов Е12. Все его значения пропорциональны степеням десятки, над которыми произведена указанная математическая операция. На практике это выглядит, как 1, 1,2, 1,5, 1,8 и пр.

Прочие ряды кратны этому. Там корень берётся, соответственно, третьей, шестой, двадцать четвертой, сорок восьмой, девяносто шестой и даже сто девяносто второй степеней. В результате образуются стандартные ряды. Установлены собственные допуски номиналов конденсаторов. К примеру, для:

  • Е12 плюс минус 10%.
  • Е24 плюс минус 5%.
  • Для допусков жёстче 5% применяются ряды Е48 и выше.

Соединение конденсаторов

Со снижением степени корня растёт расстояние между номиналами. Поэтому для перекрытия всего диапазона и допуски следует взять менее жёсткие. На практике, как говорили ранее в обзорах, номинал постепенно выходит за указанные рамки.

Люди измеряют реальное значение тестером и продолжают пользоваться изделием на собственный страх и риск.

Стоит заметить, что в рядах Е48 и Е96 исключены чётные члены (чётные степени числа десять под корнем), а в Е192 впервые появляются отрицательные значения (к примеру, 10 в степени минус один).

Приведённая информация позволит читателям лучше понять смысл маркировки конденсаторов, чтобы правильно набрать нужные последовательные и параллельные цепочки. Вдобавок ясно, какие номиналы искать с тем либо иным допуском, либо таковых нет в природе. Со времени съезда 1948 года в Стокгольме в большинстве стран номиналы конденсаторов унифицированы. Поэтому американские ёмкости полностью годятся для российских условий. Лишь сетевое напряжение за океаном показывает иной номинал, предлагается проявлять осторожность.

Ряд рабочих напряжений также прописан в ГОСТ 28884, как и номиналы. Причём учтены интересы всех стран. Допустим, для сетевых фильтров в Российской Федерации подойдут конденсаторы на 250 В, для Соединённых Штатов Америки уместны изделия с номиналов на 127 В. Ряды постоянных напряжений изолированы.

Источник: https://1000eletric.com/soedinenie-kondensatorov-dlya-uvelicheniya-emkosti/

Последовательное соединение конденсаторов для подбора емкости. Соединение конденсаторов

Соединение конденсаторов для увеличения емкости

где Q-заряд конденсатора или конденсаторов,к которым при­ложено напряжение U-электрическая емкость конденсатораили батареи соединенных конденсаторов,к которой приложено напряжение U.

Таким образом,конденсаторы служат для накопления исохра­нения электрического поля иего энергии.

15.Дайтеопределениепонятиямтрех лучевая звезда и треугольниксопротивлений. Запишите формулы дляпреобразования трех лучевой звездысопротивлений в треугольниксопротивленийи наоборот. Преобразуйте схему к двумузлам (Рисунок 5)

Читайте также  Как выполняется соединение звездой?

Рисунок 5- Схемаэлектрическая

6.СХЕМЫ ЗАМЕЩЕНИЯ

Для облегчения расчета составляетсясхема замещения электрической цепи, т.е. схема, отображающая свойства цепипри определенных условиях.

На схеме замещения изображают всеэлементы, влиянием которых на результатрасчета нельзя пренебречь, и указываюттакже электрические соединения междуними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергииможно представить ЭДС без внутреннегосопротивления, если это сопротивлениемало по сравнению с сопротивлениемприемника (рис. 3.13,6).

Приr= 0внутреннее падение напряженияUо= 0, поэтому

напряжение на зажимах источникапри любом токе равно

ЭДС: U=E=const.

В некоторых случаях источник электрическойэнергии на расчетной схеме заменяютдругой (эквивалентной) схемой (рис. 3.14,а),где вместо ЭДСЕисточникхарактеризуется его током короткогозамыканияI K ,а вместо внутреннего со­противленияв расчет вводится внутренняя проводимостьg=1/r.

Возможность такой замены можно доказать,разделив равенство (3.1) на r:

U/r=E/rI,

где U/r=Io-некоторый ток,равный отношению напряжения на зажимахисточника к внутреннему сопротивлению;E/r=IK— ток короткого замыкания источника;

Вводя новые обозначения, получимравенство IK=Io +I,которому удовлетворяет эквивалентнаясхема рис. 3.14,а.

В этом случае при любой величиненапряжения на зажимах; источника еготок остается равным току короткогозамыкания (рис. 3.14,6):

Источник с неизменным током, не зависящимот внешнего сопротивления, называютисточником тока.

Один и тот же источник электрическойэнергии может быть заменен в расчетнойсхеме источником ЭДС или источникомтока.

Параллельное соединение конденсаторов – это батарея, в которой все конденсаторы находятся под одним и тем же напряжением, а суммарный ток равен полной алгебраической сумме токов этих элементов.

Основные тезисы

При параллельном включении конденсаторов их ёмкости складываются. Это позволяет быстро вычислить результат. Рабочее напряжение для всех конденсаторов одинаковое, а заряды из всех складываются воедино. Это следует из формулы, выведенной Вольтой ещё в XVIII веке:

C = q/U, тогда C1 + C2 + … = q1 + q2 + …/U.

Параллельное включение конденсаторов ведёт себя, как один конденсатор большой ёмкости.

Зачем нужно включать конденсаторы параллельно

  • В радиоприёмниках подстройка под частоту волны осуществляется коммутацией блоков конденсаторов. Этим осуществляется ввод резонансного контура в резонанс.
  • В фильтрах мощных блоков питания за каждый рабочий цикл нужно запасать много энергии. Строить его на индуктивностях экономически нецелесообразно. Поэтому применяют параллельный набор из больших электролитических конденсаторов.
  • Параллельное включение конденсаторов можно встретить в измерительных схемах. Где эталоны ответвляют на себя часть тока, и по этой величине оценивается номинал. То есть размер ёмкости исследуемого конденсатора.
  • Параллельно время от времени могут устанавливаться компенсаторы реактивной мощности. Это устройства, которые блокируют выход лишней энергии в питающую сеть. Что предотвращает образование помех, перегрузку генераторов, трансформаторов и избыточный нагрев проводки.

Реактивная мощность сети

Когда работает асинхронный двигатель, то происходит расхождение тока и напряжения по фазе. Это наблюдается вследствие наличия обмотки, которая имеет индуктивное сопротивление. Как результат, часть мощности отражается обратно в цепь. Этот эффект можно устранить, если индуктивное сопротивление компенсировать ёмкостным. Имеется и другой способ – использование синхронных двигателей. Он эффективен при напряжениях от 6 до 10 кВ.

По возможности предприятия должно потреблять всю произведённую им самим реактивную мощность. Но синхронные двигатели не всегда подходят условиям технологических процессов. Тогда и ставят конденсаторные установки. Их реактивное сопротивление должно быть равным индуктивностям двигателей. Конечно, в идеале, потому что на производстве условия постоянно меняются. В этом свете становится понятно, почему так сложно отыскать золотую середину.

Но если использовать параллельное соединение конденсаторов и коммутировать их при помощи реле должным образом, то задача достаточно просто решается. Сюда можно добавить, что некоторые предприятия за отражённую реактивную мощность тоже платят. И если её не использовать, то это будут чистой воды экономические потери. Поставщиков энергии тоже можно понять: реактивная мощность забивают линию ЛЭП, нагружает трансформаторы и тогда оборудование не может выдавать полную нагрузку. Если каждое предприятие станет загружать канал лишним током, то экономическое положение энергетиков немедленно пошатнётся.

В то же время реле реактивной мощности широко распространены и помогут определить, какую часть конденсаторов включить в работу. Пример графика расчёта затрат приведён на рисунке. Имеется некая оптимальная точка, перешагивать которую экономически нецелесообразно. Но можно это сделать из каких-либо иных мотивов.

Схема соединения компенсирующих установок

В трёхфазных сетях компенсирующие конденсаторы ставят тройками по двум общеизвестным схемам:

Реактивная мощность в этих случаях вычисляется по формулам, представленным на рисунке. Через греческую омегу обозначена круговая частота сети (2 х Пи х 50 Гц). Из соотношений получается, что схема включения конденсаторов треугольником более выгодна: мощность выросла в 3 раза. Это происходит от того, что звезда использует фазное напряжение, а оно в 1,73 раза меньше линейного. Компенсируемая реактивная мощность же зависит от квадрата этого параметра.

Из этих соображений трёхфазные конденсаторы обычно всегда изготавливаются треугольником, а под звезду нужно выпросить индивидуальный заказ (фактически три однофазных конденсатора). Есть и другая сторона медали: на вольтаж 1,05; 3,15; 6,3; 10,5 кВ все конденсаторы однофазные. И можно соединять их так, как заблагорассудится. У звезды, например, меньше рабочее напряжение, а значит, и каждый конденсатор в отдельности выйдет дешевле. Ту и другую схему нельзя отнести к параллельным включениям, но такие тройки, в свою очередь, объединяются в:

И внутри объединений однофазные конденсаторы могут включаться последовательно и параллельно, а трёхфазные – только параллельно. При этом рекомендуется номиналы всех отдельных элементов выбирать одинаковы. Это не только упрощает расчёт, но и уравнивает нагрузку по всем частям электрической схемы. Имеются и установки, где присутствует смешанное соединение по каждой фазе. Образуются параллельные ветви .

Установки выполняют однофазными или трёхфазными. В сетях с напряжением 380 В практически всегда применяется параллельное соединение конденсаторов. Исключением является случай использования оборудования с одной фазой как на 220 В (фазное), так и 380 В (линейное). Тогда под прибор ставится индивидуальная установка (или группа), компенсирующая реактивную мощность. В осветительных сетях конденсаторы по большей части ставят уже после выключателя по очевидным причинам. В прочих случаях – в зависимости от особенностей функционирования объекта.

Для напряжений 3, 6 и 10 кВ однофазные конденсаторы могут включаться обычной или двойной звездой (см. рис.). Один вывод здесь может быть заземлены (глухозаземленная нейтраль). По этой причине и допускается использование однофазных конденсаторов, в том числе и одним изолированным выводом. В последнем случае нужно убедиться, что нулевой проводник выходит на корпус изделия.

Читайте также  Соединение зигзагом в трехфазного трансформатора

Обычно главный выключатель ставится в той или иной секции защищаемого оборудования (территориально) и управляет цепью компенсации в общем. То есть задействует или убирает вовсе дополнительное реактивное сопротивление. Если в данном секторе технологическое оборудование простаивает, то и главный выключатель разорвёт цепь компенсации. Конденсаторные установки обычно стоят в выделенном помещении вместе, электрически соединены параллельно. Перед каждой из них стоит выключатель цепи релейной регуляции для повышения или уменьшения общей ёмкости компенсаторов.

Таким образом, в зависимости от того, какое именно оборудование используется предприятием, объем реактивной мощности обусловливает помощь тех или иных конденсаторных установок, гибко подстраиваемых под имеющиеся нужды. В итоге:

  1. Секции оборудования включены параллельно. Это легко понять, если представить бытовые приборы, питаемые одним удлинителем. Все включены параллельно. Но находятся, например, в разных цехах, секторах и пр. Встречаются и случаи, когда одна крупная энергетическая установка (например, генератор ГЭС) делится на сравнительно независимые секции.
  2. Конденсаторные установки также включены параллельно, но находятся, как правило, в одном месте. Это сделано для того, чтобы можно было автоматически или вручную легко регулировать общую ёмкость посредством коммутации выключателей облегчённого типа. Один и тот же конденсатор может работать для компенсации реактивной мощности любой из секций или сразу обеих.

Особенности конденсаторной защиты

Главные выключатели, как правило, используются при авариях и вырубают сразу целую секцию оборудования. Конденсаторные установки также могут набираться в секции параллельным их включением. Тогда главный выключатель может сразу вырубать одну такую «батарею». Тогда как другие секции конденсаторных установок останутся в действии. Важно понять, что защитное оборудование, как и защищаемое можно группировать самыми разными методами. В зависимости от того, как это удобно и экономически обосновано.

Облегчённые выключатели применяются, как правило, в цепях регуляции. Управляются через реле и повышают или понижают общую ёмкость конденсаторных установок. В качестве главного выключателя обычно выбирается вакуумный или элегазовый.

Особенностью цепей выше 10 кВ является использование однофазных конденсаторов, собираемых по схеме звезды или треугольника, в каждой ветви которых стоит параллельно-последовательная группа ёмкостей (см. рис.). При наличии изделий с высоким рабочим напряжением можно делать и наоборот. То есть применять последовательно-параллельно включение. Тогда рабочие напряжения конденсаторов выбираются так, чтобы количество групп, включенных друг за другом было минимальным. Напряжение на каждом из элементов при этом, естественно, увеличивается. Для справки: .

Если сделать все так, как описано выше, то при выходе из строя любого элемента цепи компенсации реактивной мощности прочие будут работать в относительно щадящем режиме. Разумеется, параметры цепи нужно контролировать, а эксплуатирующий персонал согласно имеющимся методикам ведёт проверку конденсаторных установок на исправность. При проектировании нужно учесть одну небольшую особенность:

Чем больше в цепи компенсации последовательных групп конденсаторов, тем сложнее для каждой из них будет обеспечить равномерное распределение напряжения. В частности, возможны частые перегрузки того или иного сегмента.

Вдобавок ко всему сложные электрические соединения непросто проверять обслуживающему персоналу. Витиеватая схема плохо поддаётся монтажу, часты ошибки. Идеальным является параллельное соединение конденсаторных блоков по каждой фазе. Тогда и монтировать легко, и методика проверки упрощается максимально.

Разряд конденсаторов

Включенные параллельно конденсаторы обладают большой ёмкостью, вследствие чего при прекращении работы на них остаётся заряд. Это можно прочувствовать на себе, если коснуться штекера только что выключенной старенькой дрели. В новых моделях фильтр устроен так, что цепь разряжается через резистор, и ничего подобного, описанному выше, не наблюдается.

Для снижения напряжения можно также использовать и индуктивности, включенные параллельно конденсаторам. В этом случае сопротивление заземления переменному току весьма велико, а для постоянного — не сложно преодолеть этот участок. То есть, в период работы оборудования ток здесь весьма мал, и потери невелики. После останова технологической линии заряд понемногу сливается через высокоомный резистор или индуктивность. Разумеется, никто не запрещает поставить в цепи заземления реле, замыкающее контакты только после выключения всех устройств. Но это дороже и требует автоматизации.

Процесс разряда цепи важен с точки зрения обеспечения безопасности. Можно представить это так: конденсатор, заряжённый от розетки, ещё долго хранит разность потенциалов и представляет определённую опасность для окружающих. В однофазных сетях с напряжением 220 В разряд выполняется через входные фильтры при условии, что корпус правильно заземлён. Сопротивление в цепи, включенной параллельно конденсаторам, определяется по формуле, представленной ниже.

Под Q подразумевается реактивная мощность установки в варах (ВАР), а Uф – фазное напряжение. Можно легко показать, что формула дана из расчёта времени разряда. В самом деле: Q зависит линейно от ёмкости, будучи перенесена в левую часть формулы, она даст постоянную времени RC. За три таких периода батарея разряжается примерно на 97%. Исходя, из этих условий можно найти и параметры индуктивности. А ещё лучше – последовательно с нею включить резистор, как часто и делается в реальных схемах.

Источник: https://stroidok.ru/serial-connection-of-capacitors-for-the-selection-of-capacitance-coupling-of-capacitors.html

Как увеличить емкость конденсатора: проверенный способ соединения, формула, типы подключений

Соединение конденсаторов для увеличения емкости

Если нужно срочно отремонтировать технику, а нужного конденсатора нет, то можно увеличить емкость конденсатора, как известно из школьной программы, соединив несколько приборов в одну цепь.

Такая проблема может также возникнуть, если, например, нужного номинала нет в продаже, то есть для нестандартных подключений, например, в радиотехнических опытах.

Электрическая емкость

При соединении приборов для конденсации заряда, как правило, техника интересует электрическая емкость, которая получится в итоге.

Электроемкость показывает способность двухполюсника накапливать в себе заряд и измеряется в фарадах. Может показаться, что чем выше это значение, тем лучше, но на практике не существует возможности создать все возможные на свете емкости, более того, часто это и не нужно, так как во всех приборах, использующихся повседневно, применяются стандартные приборы для конденсации.

Можно соединить несколько приборов для конденсации в цепь, создав одну конденсирующую емкость, при этом значение характерной величины будет зависеть от типа подключения, и для его расчета есть давно известные формулы.

Параллельное соединение

Существует два типа подключения приборов в цепь: последовательное и параллельное. Каждый из них обладает своими свойствами, но, как правило, используется параллельное соединение конденсаторов.

Параллельное соединение обладает такими свойствами:

  1. Емкость составного двухполюсника увеличивается по сравнению с каждым отдельным прибором.
  2. Напряжение в сети не изменяется.

Соединить конденсаторы для увеличения емкости, как показывают свойства, лучше этим способом. Для этого нужно соединить выводы с каждого двухполюсника по группам: у каждого из них два вывода. Нужно создать две группы: в одну соединить все конденсаторы с одного вывода, а во вторую с оставшегося.

Читайте также  Параллельное соединение транзисторов в блоках питания

При таком соединении приборы для конденсации образуют одну емкость, поэтому верна такая формула: С=С1+С2+…СN, где N — количество конденсаторов в цепи.

Например, если имеются номинальные значения 50мкф, 100мкф и 150мкф, то при последовательном подключении общее значение в цепи будет 300мкф.

В жизни это подключение используют довольно часто, например, если при расчетах оказалось, что требуется такой двухполюсник, которого в продаже точно не найти. С помощью этого способа можно варьировать емкость конденсатора так, как это потребуется, при этом не изменяя напряжение в сети.

Последовательное включение конденсаторов

Свойства последовательного включения конденсаторов:

  1. Емкость последовательно соединенных приборов для конденсации заряда в отличие от емкости параллельно соединенных конденсаторов уменьшается.
  2. Напряжение на приборах растет.

Для такого подключения нужно просто соединять выводы двухполюсников один с другим, образуя цепочку: вывод первого будет соединен с выводом второго, оставшийся вывод второго с выводом третьего и так далее.

Формула подключения: 1/(1/С1+1/С2+…+1/СN), где N — это количество приборов в соединении.

Например, есть три конденсатора по 100мкф. 1/100+1/100+1/100=0,03мкф. 1/0,03=33мкф.

Заряды распределятся с чередующимся знаком, а емкостное значение будет ограничено только им же для самого слабого звена в цепи. Как только он получит свой заряд, передача тока в цепи прекратится.

Для чего тогда нужен подобный способ подключения? Такая цепь более устойчива и может выдержать большее напряжение при подключении в схему при меньшем емкостном номинале конденсатора. Однако в продаже имеются приборы, которые и без того обладают нужными свойствами, поэтому-то такое подключение в жизни практически не используется, а если используется, то для специфических задач.

Смешанный способ

Сочетает в себе параллельное и последовательное подключения.

При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.

Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.

Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.

Сравнение различных вариантов

Емкость Напряжение
Параллельное Увеличивается Не изменяется
Последовательное Уменьшается Увеличивается
Смешанное Изменяется Увеличивается

Для выбора соединения можно воспользоваться такой таблицей. Слева тип соединения приборов, сверху свойства прибора для конденсации заряда.

Если требуется увеличить емкость, то нужно использовать параллельное соединение, а если увеличить напряжение — то последовательное. Если же требуется и то, и то, то нужно будет рассчитывать смешанное подключение конденсаторов в цепь.

Источник: https://220v.guru/elementy-elektriki/kondensatory/sposob-kak-uvelichit-emkost-kondensatora-pri-podklyuchenii.html

Как соединить конденсаторы? Последовательное и параллельное соединение

Соединение конденсаторов для увеличения емкости

Вопрос о том, как соединить конденсаторы может возникнуть у любого человека, интересующегося электроникой и пайкой. Чаще всего, необходимость в этом возникает в случаях отсутствия под рукой устройства подходящего номинала при сборке или ремонте какого-либо прибора.

К примеру, человеку нужно отремонтировать устройство, заменив в нем электролитический конденсатор ёмкостью 1000 микрофарад или больше, на руках подходящие по номиналу детали отсутствуют, но есть несколько изделий с меньшими параметрами. В этом случае есть три варианта выхода из сложившейся ситуации:

  1. Поставить вместо конденсатора на 1000 микрофарад устройство с меньшим номиналом.
  2. Поехать в ближайший магазин или радио-рынок для покупки подходящего варианта.
  3. Соединить несколько элементов вместе для получения необходимой ёмкости.

От установки радиоэлемента меньшего номинала лучше отказаться, так как подобные эксперименты не всегда заканчиваются успешно. Можно съездить на рынок или в магазин, но это требует немало времени. Потому в сложившейся ситуации чаще соединяют несколько конденсаторов и получают необходимую емкость.

Параллельное соединение конденсаторов

Параллельная схема подключения конденсаторов предполагает соединение в две группы всех обкладок приборов. В одну группу соединяются первые выводы, а в другую группу – вторые выводы. На рисунке ниже представлен пример.

Конденсаторы, соединенные параллельно между собой, подключаются к одному источнику напряжения, поэтому на них существует две точки напряжения или разности потенциалов. Следует учитывать, что на всех выводах подключенных параллельно конденсаторов напряжение будет иметь одинаковую величину.

Параллельная схема образует из элементов единую ёмкость, величина которой равняется сумме ёмкостей всех подключенных в группу конденсаторов. При этом через конденсаторы в процессе работы устройства будет протекать ток разной величины. Параметры проходящего через изделия тока зависят от индивидуальной ёмкости устройства. Чем выше ёмкость, тем больший по величине ток пройдет через него. Формула, характеризующее параллельное соединение, имеет следующий вид:

Параллельная схема чаще всего используется в быту, она позволяет собрать необходимую ёмкость из любого числа отдельных, различных по номиналу элементов.

Последовательное соединение конденсаторов

Схема последовательного подключения представляет собой цепочку, в которой первая обкладка конденсатора соединяется со второй обкладкой предыдущего устройства, а вторая обкладка – с первой обкладкой следующего прибора. Первый вывод первого конденсатора и второй вывод последней детали в цепи соединяются с источником электрического тока, благодаря чему между ними осуществляется перераспределение электрических зарядов. Все промежуточные обкладки имеют одинаковые по величине заряды, чередующиеся по знаку.

На рисунке ниже представлен пример последовательного подключения.

Через соединенные в группу конденсаторы протекает ток одинаковой величины. Общая мощность ограничивается площадью обкладок устройства с наименьшим номиналом, так как после зарядки наименьшего по ёмкости устройства, вся цепь перестанет пропускать ток.

Несмотря на явные недостатки, данный способ обеспечивает увеличение изоляции между отдельными обкладками до суммы расстояний между выводами на всех последовательно соединенных конденсаторах. То есть, при последовательном соединении двух элементов с рабочим напряжением 200 В, изоляция между их выводами сможет выдерживать напряжение до 1000 В. Ёмкость по формуле:

Данный способ позволяет получить эквивалент меньшего по ёмкости конденсатора в группе, способной работать при высоких напряжениях. Всего этого можно достичь путем покупки одного единственного элемента подходящего номинала, потому на практике последовательные соединения практически не встречаются.

Эта формула актуальна для расчета общей ёмкости цепи последовательно соединенных двух конденсаторов. Для определения общей ёмкости цепи с большим числом приборов необходимо воспользоваться формулой:

Смешанная схема

Пример смешанной схемы подключения представлен ниже.

Чтобы определить общую ёмкость нескольких устройств, всю схему необходимо разделить на имеющиеся группы последовательного и параллельного соединения и рассчитать параметры ёмкости для каждой из них.

На практике данный способ встречаются на различных платах, с которыми приходиться работать радиолюбителям.

Источник: http://podvi.ru/elektrokompanenty/kak-soedinit-kondensatory.html