Регулируемый блок питания для светодиодов

Драйвер или блок питания для светодиодов

Регулируемый блок питания для светодиодов

Независимо от того, проектируете ли вы свой собственный светодиодный светильник,  модернизируете существующие светильники или приобретаете новые светодиодные светильники, вам нужно будет найти правильный Блок питания для светодиодного светильника.

 Вам понадобится Блок питания светодиодный драйвер или источник постоянного напряжения (или их комбинация), чтобы ваши светодиоды работали правильно. При выборе Блока питания для светодиодного светильника необходимо учитывать множество факторов.

 Мы обсудим все факторы и поможет вам выбрать правильный источник питания для ваших светодиодов!

ПЕРВОЕ … Убедитесь, что у вас есть контроль тока на светодиодах

Для большинства светодиодов требуется ограничивающее ток устройство (будь то драйвер или резисторы), чтобы предотвратить превышение тока светодиодов. Этот резистор постоянного тока или резистор с ограничением тока используется для регулирования тока на светодиодах, что позволяет им работать в безопасности и максимизировать их срок службы.

 Электрические характеристики светодиодов меняются по мере их нагрева(читайте нашу статью про температуру светодиодов); если ток не регулируется, светодиоды будут потреблять слишком много тока с течением времени. Это превышение тока приведет к изменению яркости светодиода, что приведет к высокой внутренней теплоте, что в конечном итоге приведет к сбою светодиода.

 Если вы строите свой собственный светодиодный светильник или работаете с любым из наших светодиодов компонентов, вам понадобится постоянное устройство в вашей системе. Большинство готовых светодиодных продуктов или светодиодных полосок (которые вы покупаете прямо из магазина) уже имеют драйверы или резисторы, встроенные для регулирования тока.

 Если вы не уверены, нужен ли вам источник постоянного тока, посмотрите на это полезный пост, чтобы узнать.

Источники постоянного напряжения

Источник питания постоянного напряжения может использоваться для питания светодиодных ламп, которые имеют резисторы или драйверы постоянного тока уже в системе. Эти типы продуктов обычно требуют питание от постоянного напряжения.

Вам понадобится Блок питания для светодиодного светильника для преобразования сети переменного напряжения в безопасное постоянное напряжение для ваших источников света. Например, светодиодные ленты (Читайте нашу статью как подключить светодиодную ленту) имеют встроенные ограничители тока (как вы можете видеть встроенный в основании светодиодной ленты).

 Если вы хотите установить это в своем автомобиле, вам не понадобится блок питания. Батареи автомобилей выделяют 12 В постоянного тока. Питание 12 В от аккумулятора будет полностью адекватным для ваших источников света.

 Но для того, чтобы включить эти светодиодные ленты в домах, необходим преобразователь переменного тока в постоянный ток, который будет потреблять стандартное бытовое напряжение 220 В переменного тока и преобразовывать его в 12 В / 24 В постоянного тока.

Какими характеристиками должен обладать блок питания для светодиодного светильника?

Таким образом, вам нужен Блок питания для светодиодного светильника на постоянное напряжение, который может преобразовывать ваше бытовое напряжение переменного тока в безопасное постоянное напряжение. Есть много вещей, которые влияют на поиск правильного источника питания для ваших нужд. Во-первых, мы должны заблокировать требуемую мощность от источника питания.

Мощность

Чтобы начать, узнайте, сколько ватт потребляет ваш светильник. Если вы надеетесь запустить более одного светильнка от одного источника питания, вы должны суммировать мощность, чтобы найти общее количество потребляемых ватт.

 Удостоверьтесь, что у вас достаточно большой источник питания, давая себе 20% -ный запас над общей мощностью, которую вы рассчитываете на своих светодиодах.

 Это можно легко сделать, умножив общую мощность на 1,2, а затем найдя источник питания, рассчитанный на эту мощность.

Скажем, например, у нас есть 4 линии светодиодных полосок, которые работают примерно на 12 ватт каждый. Простое их умножение покажет, что наша мощность системы должна быть около 48 Вт. Теперь мы можем добавить 20% рекомендуемую подушку с 48 х 1,2 = 57,6 Вт. Для этого проекта достаточно 60-ваттного (или более высокого) источника питания.

Напряжение / Ток

При создании светодиодного светильника или замене неисправного Блока питания для светодиодного светильника важно сначала убедиться, что выходное напряжение совместимо со светодиодом.

Читайте также  Драйвер для светодиодов из энергосберегающей лампы

 Светодиодные продукты со встроенными регуляторами тока обычно будут довольно хорошими в определении того, какое входное напряжение должно использоваться.

 Например, источник питания 12 В будет использоваться с нашими светодиодными лентами, поскольку это то, что им требуется.

https://www..com/watch?v=DMlBMcQPvtM

Другим распространенным приложением является использование светодиодов высокой мощности с постоянными токовыми драйверами, для которых требуется входное напряжение постоянного тока. Скажем, у нас есть шесть светодиодов Cree, которые выходят из драйвера. Каждый светодиод работает примерно на 3,1 вольта. С четырьмя из них наше общее напряжение в этой серии будет составлять 18,6 В постоянного тока.

 Как правило, драйверы низкого напряжения, работают лучше, если у вас есть небольшой запас над требуемым напряжением. Для этой настройки я бы использовал источник питания, выводящий по крайней мере 24 В постоянного тока.

 Обратите внимание, что вы всегда должны убедиться, что используемый Блок питания для светодиодного светильника низкого напряжения рассчитан на правильное напряжение, которое вы хотите ввести.

Кроме того, убедитесь, что выбранный источник питания может обрабатывать входную мощность, которая у вас есть. Линейное напряжение будет меняться в зависимости от того, где вы находитесь в мире.

 Убедитесь, что вы знаете, есть ли мощность переменного тока (90-120 В переменного тока) или сетевое питание переменного тока (200-240 В переменного тока).

 Многие источники питания, такие как продукты Mean Well, будут рассчитаны на весь диапазон, но всегда полезно знать ваш вход переменного тока и следить за тем, чтобы источник питания, который вы используете, подходит для этого.

Регулируемый блок питания для светодиодного светильника

Если вы хотите регулировать яркость, и вы хотите настроить их яркость, убедитесь, что вы выбрали источник питания, который имеет возможности диммирования. В спецификациях источника питания следует указать, является ли Блок питания для светодиодного светильника диммируемым или нет, и какой тип управления диммером он использует. Я кратко рассмотрю два типа управления:

PWM Dimming: также известный как  широтно-импульсной модуляции, может использоваться на всех источниках питания.

 Даже Блок питания для светодиодного светильника не являющийся диммируемым по спецификации, может быть регулируемым через настенные или дистанционные диммеры PWM. Это связано с тем, что диммеры PWM идут в линию с полосками, затемняя на стороне 12 В постоянного тока цепи.

 Диммеры PWM фактически подают импульсы на высоких частотах, чтобы изменить восприятие света невооруженным глазом. Чем выше частота, тем ярче они будут.

TRIAC Dimming: этот тип затемнения позволяет освещать светодиоды стандартными диммерами. Вы должны убедиться, что источник питания подходит для регулировки яркости переменного тока (TRIAC), проверяя спецификации.

 Эти источники питания работают путем изменения мощности на стороне переменного тока схемы через диммер TRIAC. Изменение мощности, создаваемой диммером на стороне входа переменного тока, будет варьировать напряжение на выходе постоянного тока и регулировать яркость светодиодов.

 Диммеры TRIAC можно найти в обычных магазинах. Наиболее популярными / узнаваемыми брендами будут Lutron и Leviton.

Температура и погода

Важным фактором, который нельзя игнорировать при выборе Блока питания для светодиодного светильника, является область и окружающая среда, в которых он будет использоваться. Источники питания работают наиболее эффективно, если они используются в их температурных параметрах.

 Спецификации Блока питания для светодиодного светильника должны включать безопасный диапазон рабочих температур. Лучше всего работать в этом и не задерживать Блок питания для светодиодного светильника где-нибудь там, где тепло может накапливаться и превышать эту максимальную рабочую температуру.

 Как правило, это плохая идея вставить блок питания в крошечный корпус без системы вентиляции. Это позволит даже минимальное количество тепла, создаваемого источником, со временем нарастать и в конечном итоге готовить источник питания.

 Поэтому убедитесь, что область не слишком теплая или холодная, и что тепло не может нарастать до уровня повреждения.

Каждый светодиодный источник питания также имеет рейтинг защиты от проникновения (IP). IP-рейтинги состоят из двухзначного кода, который указывает размер твердых веществ и давление жидкостей, которые могут сопротивляться источнику питания. Первое число относится к размеру твердых веществ, которые может выдерживать устройство, тогда как второе число относится к количеству жидкости, которое может выдерживать устройство. 

КПД

Эффективность Блока питания для светодиодного светильника говорит о том, какая мощность действительно направлена ​​на то, чтобы светодиод загорелся. Чем выше процентная доля энергопотребления, тем больше энергии вы в итоге сохраняете.

 Для светодиодных светильников рекомендуется выбрать источник питания с КПД 80% или выше. Ознакомьтесь с источниками питания Mean Well для наиболее эффективного выбора, так как они имеют рейтинги эффективности, хорошо работающие на 90 процентов.

Читайте также  Ультрафиолетовая лампа своими руками из светодиодов

Размер

При выборе Блока питания для светодиодного светильника для вашего светодиодного проекта важно знать, где он должен быть установлен или установлен.

 Если вы хотите поместить Блок питания для светодиодного светильника внутрь продукта, который вы делаете, он должен быть достаточно мал, чтобы вписаться в предоставленное пространство. Если он находится вне светильника, у него должен быть способ установить соединение.

 Существуют различные источники питания, предлагаемые в разных размерах и формах в соответствии с вашими потребностями.

Класс 1 или Класс 2?

Легко путать эти два рейтинга, поэтому давайте убедимся, что у нас есть все это сейчас, когда мы приближаемся к пониманию источников питания светодиодов. Источник питания класса 2 соответствует ограниченным уровням мощности, определенным Национальным электрическим кодексом (NEC), и соответствует требованиям стандарта UL 1310.

Источник: https://chm-b.com/drayver-ili-blok-pitaniya-dlya-svetodiodov/

Регулируемый блок питания для светодиодов

Регулируемый блок питания для светодиодов

В последние годы светодиодная лента стала особо популярной. Имея невысокую стоимость и будучи поистине универсальной в плане применения, она успешно используется как для декоративной подсветки, так и для освещения. Основной трудностью, с которой сталкиваются начинающие мастера, является выбор блока питания для светодиодной ленты (СЛ). Сегодня мы попробуем решить этот вопрос.

Принцип действия импульсного блока питания

На сегодняшний день для питания светодиодной ленты применяются блоки, использующие принцип импульсного преобразования напряжения. Суть работы блока питания такого типа заключается в следующем:

  1. Выпрямление сетевого напряжения.
  2. Подача напряжения на первичную обмотку трансформатора в виде высокочастотных импульсов. Они следуют с частотой более 20 кГц, а продвинутые схемы дорогих ИИП работают на частотах в 100 кГц.
  3. До нужного уровня напряжение понижается при помощи импульсного трансформатора.
  4. На выходном каскаде происходит выпрямление и стабилизация величины пониженного напряжения.

Для примера рассмотрим классическую схему импульсного преобразователя переменного напряжения 220 В в постоянное 12 В, собранного на микросхеме Top242.

Схема импульсного блока питания AC220/DC12 В

Входное сетевое напряжение поступает на выпрямитель, состоящий из диодного моста BR1 и сглаживающего фильтра С1-С4, L1. Полученное таким образом постоянное напряжение поступает на микросхему DA1, на которой собран высокочастотный (до 100 кГц) генератор, нагруженный на импульсный трансформатор Т1. Принцип работы трансформатора тот же, что и у классического. Единственное отличие – он работает на высокой частоте, но об этом позже.

Пониженное до 12 В напряжение высокой частоты поступает на выпрямитель (диод D3) и сглаживающий фильтр (С9, С10, L1). Одновременно это же напряжение через оптрон U1 поступает на цепь стабилизации, встроенную в микросхему DA1. Стабилизация производится при помощи широтно-импульсной модуляции (ШИМ), суть которой заключается в следующем.

При увеличении выходного напряжения цепь стабилизации (ШИМ-контроллер) изменяет скважность (длительность) импульсов, поступающих на трансформатор, и его действующее выходное напряжение уменьшается. При чрезмерном понижении выходного напряжения длительность импульсов увеличивается. В результате на выходе блока устанавливается ровно 12 В, что и необходимо для правильного питания светодиодной ленты.

В чем преимущества импульсного блока питания перед трансформаторным? Поскольку преобразование напряжения производится на относительно высокой частоте, соответственно, уменьшаются габариты и масса трансформатора, а значит и всего блока. Причем уменьшаются существенно – в десятки раз. По этой же причине уменьшаются и габариты сглаживающих конденсаторов. ШИМ-модуляция же позволяет отказаться от классических линейных стабилизаторов, имеющих низкий КПД и требующих громоздких радиаторов охлаждения.

В результате мы получаем исключительно компактный и надежный блок питания с КПД до 95%.

Нередко можно услышать вместо «блок питания» выражение «трансформатор», хотя это далеко не одно и то же. Блок питания, по сути, – преобразователь, который обычно изменяет не только величину напряжения, но и род тока. Название «трансформатор» изначально получили устройства, изменяющие лишь величину напряжения без изменения других его характеристик. Тем не менее словом «трансформатор» нередко подменяется выражение «блок питания».

Основные критерии выбора

Выбирая блок питания для СЛ, необходимо обратить внимание на следующие основные характеристики:

  1. Метод преобразования напряжения.
  2. Принцип охлаждения.
  3. Исполнение.
  4. Выходное напряжение.
  5. Мощность.
  6. Дополнительный функционал.

Метод преобразования

Как я уже говорил выше, блок питания может быть трансформаторным или импульсным. Если нужен блок питания относительно небольшой мощности, то предпочтение лучше отдать импульсной конструкции. Покупка серьезного ТБП оправдает себя лишь при мощностях в сотни ватт – ИБП такой мощности стоят дорого и нередко имеют вентиляторы охлаждения, которые создают шум и собирают пыль.

Читайте также  Соединение светодиодов в светодиодной ленте

Если ты увидишь в магазине недорогой трансформаторный адаптер небольшой мощности, устраивающий тебя по размерам, то это тоже неплохой вариант. Стоит он недорого и тяжеловат, но не в кармане же его носить. Главное, чтобы в проект вписался.

Охлаждение

Охлаждение может быть пассивным и активным. В первом случае охлаждение узлов прибора производится естественным образом, во втором для этих целей служит вентилятор. Если мощность БП невелика, то от устройства с принудительным охлаждением лучше отказаться: вентилятор шумит и вместе с воздухом всасывает массу пыли, оседающую на узлах блока. Такие источники требуют регулярного технического обслуживания и, главное, плохо защищены от влаги.

Такой блок не только шумит, но и является своеобразным пылесосом 

Исполнение

От конструктивного исполнения зависит степень защиты от окружающей среды. Если блок питания будет работать на улице или во влажном/пыльном помещении, то придется выбрать пылевлагозащищенную, а еще лучше герметичную конструкцию.

Никаких дырочек, щелочек и, конечно, никаких вентиляторов. Для сложных механических условий (вибрация, тряска, удары и пр.) отлично подойдет прибор в металлическом сплошном корпусе.

Для обычного жилого помещения можно выбрать блок в открытом кожухе со множеством вентиляционных отверстий – он будет лучше охлаждаться.

Герметичный пластиковый блок питания (слева), открытый металлический защищенный от пыли, влаги, ударов блок питания (справа)

Выходное напряжение

Тут все просто. СЛ выпускаются на 2 напряжения – 12 или 24 В. Прочитай на упаковочной коробке или даже на самой ленте, на какое напряжение питания она рассчитана. Затем выбери БП, имеющий нужные параметры.

Эта СЛ рассчитана на 12 В, значит и блок питания нужен на такое же напряжение

Дополнительные функции

Блок питания для СЛ с беспроводным пультом дистанционного управления и встроенным диммером

Кроме своей основной работы, блок питания может выполнять и некоторые дополнительные функции. Существуют, к примеру, устройства со встроенными диммерами (регуляторами яркости), таймерами, автоматами эффектов и даже с беспроводными пультами ДУ. Тут уже на твое усмотрение, но имей в виду, что любая дополнительная функция отражается на стоимости конструкции.

Как рассчитать мощность блока питания для светодиодной ленты

Если у тебя под рукой калькулятор или даже просто лист бумаги с ручкой, расчет мощности блока питания займет не более минуты. Причем никаких специальных знаний для этого не потребуется, достаточно 3-х классов средней школы.

Прежде всего рассчитай потребляемую СЛ мощность. Для этого тебе понадобятся два параметра: длина будущего осветителя и его удельная мощность. Длину, само собой, ты выбираешь сам в зависимости от дизайнерской задумки. Удельная же мощность светодиодной ленты указывается в сопроводительной документации и нередко прямо на упаковке. Единицы измерения этого параметра — Вт/м.

Предположим, ты купил СЛ с удельной потребляемой мощностью 14.4 Вт/м. Это означает, что каждый метр такой ленты «съест» 14.4 Вт. При этом напряжение питания прибора значения не имеет. Для подсветки ты решил использовать 3 метра СЛ. Считаем: 14.4*3=43.2 Вт. Итак, твоя задумка будет потреблять 43,2 ватта. Для надежной работы источника питания он должен иметь некоторый (15-20%) запас мощности. Добавляем к результату еще небольшой запас и получаем 50 Вт.

Таким образом, тебе нужен адаптер мощностью не менее 50 Вт. Скорее всего, в стандартном ряду БП именно такой мощности не окажется, поэтому покупаешь ближайший по значению с большей мощностью. К примеру, на 60 Вт.

Не стоит выбирать блок питания с очень большим (в 2 и более раз) запасом мощности. Это увеличит габариты конструкции, снизит ее КПД и обойдется намного дороже.

Если ты решил обеспечить питание одним адаптером нескольких СЛ, то рассчитай потребляемую мощность каждой, а результаты сложи. Ленты будут включаться параллельно (о схеме включения см. ниже), а значит, их мощности суммируются.

Подключение светодиодной ленты

Подключение «трансформатора» (адаптера) к светодиодной ленте совсем несложное, и вряд ли вызовет у тебя трудности. Здесь достаточно решить 3 основных вопроса:

  1. Разобраться с полярностью подключения.
  2. Подобрать провод нужного сечения.
  3. Выбрать схему включения.

Полярность подключения

Внимательно осмотри блок питания и найди, где у него на выходных (output или out) клеммах обозначение «плюс», а где «минус». Если вместо клемм у блока провода, то дополнительно они расцвечены: красный «плюс», черный «минус» соответственно. То же самое сделай и со светодиодной лентой:

Полярность подключения СЛ и ее блока питания

Источник: https://1000eletric.com/reguliruemyy-blok-pitaniya-dlya-svetodiodov/