Регулировка яркости светодиодов в автомобиле

Содержание

Простой ШИМ-регулятор яркости светодиодов

Регулировка яркости светодиодов в автомобиле

С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.

С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.

Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток – низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза.

Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов.

Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц

Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -Uпит. Как только напряжение на нём достигнет уровня 2/3Uпит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -Uпит. Достигнув отметки 1/3Uпит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.

Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.

В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.

Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.

Плата и детали сборки регулятора яркости

Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

Плата в файле Sprint Layout 6.0: reguljator-jarkosti.lay6

После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

  • DA1 – ИМС NE555;
  • VT1 – полевой транзистор IRF7413;
  • VD1,VD2 – 1N4007;
  • R1 – 50 кОм, подстроечный;
  • R2, R3 – 1 кОм;
  • C1 – 0,1 мкФ;
  • C2 – 0,01 мкФ.

Заказать готовую сборку от автора можно здесь.

Практические советы

Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.

Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.

Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.

Источник: https://ledjournal.info/shemy/shim-regulyator-yarkosti-svetodiodov.html

Принцип регулировки яркости светодиодов

Регулировка яркости светодиодов в автомобиле

Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.
Итак, элементарный регулятор будет включать в себя всего четыре элемента:

  • блок питания;
  • стабилизатор;
  • переменный резистор;
  • непосредственно лампочка.

И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).

Читайте также  Плавное включение и выключение светодиодов своими руками

Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.

В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

Шим управление

Выходом из, казалось бы, сложной ситуации стало Шим управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.

Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.

Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.

Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.

NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.

Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

Источник: https://le-diod.ru/rabota/regulirovka-yarkosti-svetodiodov/

Электрика в Горно-Алтайске и майме. Магазин электротехнической продукции

Регулировка яркости светодиодов в автомобиле

Регулировка яркости источников света используется для создания комфортной освещенности помещения или рабочего места.

Регулировка яркости возможна, если устройство имеет нескольких цепей, которые включаются отдельными выключателями.В этом случае возможно получить ступенчатое изменение освещенности.

Не так давно основными источниками света были лампы накаливания и точечные галогенные лампамы, которые позволяли регулировать яркость без каких-либо проблем. Ситуация изменилась споявлением энергосберегающих (компактных люминесцентных ламп), затем и светодиодных. Популярность светодиодов очевидна.

Устройство светодиода

Полупроводниковый диод — прибор, пропускающий электрический ток в одном направлении. Протекание тока не имеет линейной зависимости от приложенного напряжения,это напоминает ветвь параболы. Получается, что в случае приложения к светодиоду малого напряжения ток не протекает.Протечет ток в случае, когда напряжение на диоде превысит пороговое значение.Для обычных выпрямительных диодов значение колеблется от 0.3В до 0.8В в зависимости от типа материала.Диоды с основой из кремния потребляют около 0.7В, германия — 0.3В. Диоды Шоттки — порядка 0.3В.

Пороговое напряжение белого светодиода около 3В, зависит от полупроводника из которого он сделан. Цвет свечения зависит от того же.Красный светодиод имеет напряжение около 1.7 В.

Вольтамперные характеристики светодиодов

Яркость свечения светодиода зависит от силы тока через него

Яркость идеального светодиода линейно зависит от тока, но в реальности немного отличаются из-за дифференциального сопротивлением диода и его тепловых потерь. Светодиод — прибор, питающийся током, а не напряжением, поэтому, для регулировки его яркости следует изменять силу тока.

Читайте также  Замена лампочек на светодиоды в автомобиле

Конечно, сила тока зависит от приложенного напряжения, но как можно судить из первого графика, даже небольшое изменение напряжения влечет за собой несоизмеримое увеличение тока.

Регулировка яркости с посредством простого реостата бесполезно, т.к. уменьшение сопротивления реостата заставит светодиод быстро загореться, затем его яркость немного увеличивается,затем перегревается и выходит из строя.

Следовательно: нужно регулировать ток при определенном значении напряжения с небольшим изменением.

Способы регулировки яркости светодиодов: линейные «аналоговые» регуляторы

Логично использовать биполярный транзистор, т.к. его выходной ток зависит от входного тока, включенного по схеме общего коллектора.

Как работает

Меняем ток базы, изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2. Резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе. Формула:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Схема егулирует ток через светодиоды и яркость свечения, при этом заметна ступенчатость на определенных положениях потенциометра. Вероятно, из-за того, что потенциометр был логарифмическим или из-за того, что любой pn-переход транзистора — это тот же диод с такой же ВАХ.

Эффективнее использовать схему стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Работает и при питании от блока питания.

асчёт выходного тока

В этом случае мы не получаем высокий КПД, т.к. все зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение теряем на LM-ке. Потери мощности здесь определяются по формуле:

P=Uвх-Uвых/I

Чтобы повысить эффективность работы регулятора, нужен ШИМ-регулятор.

ШИМ-регулировка

ШИМ — как широтно-импульсная модуляция. В основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

Теперь источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%.Подробные значения для каждого вида помещений указаны в СНИП-23-05-95 (или 2010).Пульсирующий свет вызывает повышенную утомляемость, головные боли, стробоскопический эффект, когда вращающиеся детали кажутся неподвижными.Это недопустимо при работе на производствах.

Простейший вариант ШИМ-контроллерf на базе микросхемы-таймера NE555. Это популярная микросхема. Схема:

Регулировка яркости светодиодных ламп 220В

Обычные светодиодные лампы практически не диммируются. Схема питания обычных светодиодных ламп построена на базе балластного (конденсаторного) блока питания или насхеме простейшего импульсного понижающего преобразователя первого рода.
Для диммирования применяются специальные лампы, о чем всегда указывается на упаковке.

Источник: https://elektrora.ru/profit/regulirovka-yarkosti-svetodiodnykh-lamp

Методы регулировки яркости для импульсных драйверов светодиодов

Регулировка яркости светодиодов в автомобиле

Экспоненциальный рост светодиодного освещения сопровождается расширением выбора микросхем для управления светодиодами. Импульсные драйверы светодиодов давно заменили линейные источники тока, которые потребляют значительно больше энергии.

Все приложения — от карманного фонаря до табло стадионов — требуют точного управления стабилизированным током. Во многих случаях необходимо обеспечить изменение выходной интенсивности свечения светодиодов в режиме реального времени. Эту функцию обычно называют регулировкой яркости светодиодов.

В данной статье представлены базовые понятия из теории светодиодов, а также некоторые методы регулировки яркости для импульсных драйверов светодиодов.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Понятие яркости видимого света, излучаемого светодиодом, объясняется достаточно просто. Численное значение воспринимаемой яркости светодиода можно легко измерить в единицах плотности светового потока, которые называют канделами (кд). Суммарная выходная мощность светодиода измеряется в люменах (лм).

Важно также понять, что средний прямой ток светодиода определяет яркость светодиода. На рисунке 1 показана зависимость прямого тока светодиода от светового выхода. Из рисунка видно, что эта зависимость является линейной в широком диапазоне применяемых значений прямого тока IF. Заметим, что при увеличении IF нелинейность возрастает. Когда ток начинает выходить за линейную область, происходит уменьшение эффективности (лм/Вт).

Рис. 1. Зависимость светового выхода от тока светодиода

Работа светодиода в режиме, превышающем диапазон линейного изменения светового выхода, приводит к преобразованию выходной мощности светодиода в тепло. Оно, в свою очередь, создает нагрузку на драйвер светодиода и усложняет систему отвода тепла.

Цветовая температура светодиода

Цветовая температура является показателем, который описывает цвет свечения светодиода и указывается в технической документации на светодиод. Цветовая температура светодиода определяется в пределах диапазона значений и меняется в зависимости от прямого тока, температуры перехода и срока службы светодиода. Более низкая цветовая температура соответствует красно-желтым цветам (которые называют теплыми), а более высокая цветовая температура — сине-зеленым цветам (холодным). Во многие цветных светодиодах специфицируется преобладающая длина волны, а не цветовая температура, и, кроме того, допускается сдвиг длины волны.

Читайте также  Диммер для светодиодов 220 вольт

Методы регулировки яркости светодиодов

Существуют два популярных метода регулировки яркости светодиодов в схемах импульсных драйверов: ШИМ-регулировка и аналоговая регулировка. Оба метода контролируют усредненный во времени ток через светодиод или цепочку светодиодов, но между ними есть и различия, которые становятся ясными при обсуждении преимуществ и недостатков двух типов схем регулировки.

На рисунке 2 показан импульсный драйвер светодиодов, включенный в понижающей топологии. Напряжение VIN всегда должно быть выше напряжения на светодиоде плюс напряжение на RSNS. Ток в катушке индуктивности является током светодиода. Стабилизация тока происходит с помощью контроля напряжения на выводе CS. Когда напряжение на выводе CS начинает падать ниже установленного напряжения, рабочий цикл импульсов тока, протекающего через катушку L1, светодиод и резистор RSNS, растет, тем самым увеличивая средний ток светодиода.

Рис. 2. Топология понижающего стабилизатора

Аналоговая регулировка яркости

Аналоговая регулировка яркости светодиодов заключается в подстройке тока светодиода. Проще говоря, это регулировка уровня постоянного тока светодиода. Аналоговая регулировка может выполняться с помощью подстройки резистора контроля тока RSNS или путем управления аналоговым напряжением на выводе DIM микросхемы. На рисунке 2 показаны эти два способа аналоговой регулировки.

Аналоговая регулировка с помощью подстройки RSNS

Из рисунка 2 видно, что изменение сопротивления RSNS приводит к соответствующему изменению тока светодиода при фиксированном опорном напряжении на выводе CS. Если бы можно было найти потенциометр, способный управлять высоким током светодиода, а также работать в диапазоне до 1 Ом, то это был бы практически осуществимый метод регулировки яркости светодиодов.

Аналоговая регулировка с помощью управления постоянным напряжением на выводе CS

Более сложным методом регулировки является прямое управление током светодиода посредством подачи напряжения на вывод CS. Источник напряжения обычно включают в цепь обратной связи, ток в которой формируется усилителем (см. рис. 2). Ток светодиода можно контролировать с помощью коэффициента усиления усилителя. С помощью цепи обратной связи можно реализовать токовую и тепловую защиту светодиода.

Недостатком аналоговой регулировки является то, что цветовая температура излучаемого света может меняться в зависимости от тока светодиода. В случае, когда цвет свечения светодиода является критически важным параметром или у конкретного светодиода наблюдаются заметные изменения цветовой температуры при изменении тока светодиода, регулировка яркости путем подстройки тока светодиода становится недопустимой.

LM3409 обеспечивает множество функций регулировки яркости

Микросхема LM3409 от National Semiconductor представляет собой уникальный драйвер светодиодов, который имеет необходимую функциональность для простой аналоговой и ШИМ-регулировки яркости. Этот прибор обеспечивает четыре возможных способа реализации регулировки яркости светодиода.

1. Аналоговая регулировка с помощью прямого управления вывода IADJ от источника напряжения в диапазоне 0…1,24 В.

2. Аналоговая регулировка с помощью потенциометра, включенного между выводом IADJ и землей.

3. ШИМ-регулировка с помощью вывода разрешения.

4. ШИМ-регулировка с помощью внешних шунтирующих FET.

Схема включения микросхемы LM3409 для аналоговой регулировки с использованием потенциометра показана на рисунке 6. Внутренний 5-мкА источник тока создает падение напряжения на RADJ, которое, с свою очередь, позволяет изменять порог внутренней чувствительности по току. С той же целью вывод IADJ может напрямую управляться от источника постоянного напряжения.

Рис. 6. Схема включения LM3409 при аналоговой регулировке яркости

На рисунке 7 показан график зависимости тока светодиода от сопротивления потенциометра, включенного между выводом IADJ и GND. Плоский участок кривой при значении тока в 1 А соответствует максимальному номинальному току светодиода, который устанавливается резистором контроля тока RSNS, показанным на рисунке 4.

Рис. 7. Зависимость тока светодиода от сопротивления потенциометра

На рисунке 8 показан ток светодиода как функция напряжения на выводе IADJ. Заметим, что на этом графике виден тот же максимальный ток светодиода, установленный резистором RSNS.

Рис. 8. Зависимость тока светодиода от напряжения на выводе IADJ

Оба варианта аналоговой регулировки просты в реализации и обеспечивают весьма линейные уровни снижения яркости светодиода вплоть до 10% от максимального значения.

Заключение

Существует множество методов регулировки яркости светодиодов, управляемых от импульсных стабилизаторов. Два основных вида регулировки — аналоговая и ШИМ-регулировка — имеют свои преимущества и недостатки. ШИМ-регулировка существенно снижает отклонение цвета свечения светодиода при изменении яркости за счет применения дополнительной логики для формирования ШИМ-сигнала. Аналоговая регулировка может быть более простой в реализации, но она не подходит для приложений, в которых требуется постоянная цветовая температура светодиодов.

Литература

1. Rich Rosen. Dimming Techniques for Switched Mode LED Drivers//Power Designer, №126.

Источник: https://russianelectronics.ru/metody-regulirovki-yarkosti-dlya-impulsnyh-drajverov-svetodiodov-2/

Регулировка яркости светодиодов в автомобиле

Регулировка яркости светодиодов в автомобиле

  • 16 апреля 2015 г. в 16:02
  • 661

Экспоненциальный рост светодиодного освещения сопровождается расширением выбора микросхем для управления светодиодами. Импульсные драйверы светодиодов давно заменили линейные источники тока, которые потребляют значительно больше энергии.

Все приложения — от карманного фонаря до табло стадионов — требуют точного управления стабилизированным током. Во многих случаях необходимо обеспечить изменение выходной интенсивности свечения светодиодов в режиме реального времени. Эту функцию обычно называют регулировкой яркости светодиодов.

В данной статье представлены базовые понятия из теории светодиодов, а также некоторые методы регулировки яркости для импульсных драйверов светодиодов.