Рассчитать пусковой конденсатор для однофазного электродвигателя

Конденсаторы для двигателей: пусковые и рабочие (для электродвигателей холодильников, стиральных машин)

Рассчитать пусковой конденсатор для однофазного электродвигателя

В процессе работы двигателей по обмотке течет ток, на 20-40% превышающий номинальный, поэтому при использовании электромотора в недозагруженном режиме или в режиме холостого хода, емкость рабочего конденсатора следует уменьшить.

В целях безопасности все пусковые конденсаторы должны использоваться с разрядным резистором. Сопротивление разрядного резистора подбирается так, чтобы по истечении 50 секунд полностью снять остаточное напряжение с конденсатора.

В случаях когда конденсатор используется при последовательной схеме включения со вспомогательной обмоткой электродвигателя, напряжение на клеммах конденсатора при рабочей скорости может быть значительно выше напряжения сети.

В процессе эксплуатации конденсаторов они могут устанавливаться непосредственно в физическом контакте с электродвигателем. В этом случае при выборе типа конденсатора необходимо учитывать, что конденсатор будет подвергаться воздействию повышенной температуры и вибраций — как от самого электродвигателя, так и от других пассивных элементов различного рода устройств, в составе которых будет применятся конденсатор.

При работе моторных конденсаторов проходят различного рода сложнейшие коммутационные процессы, в результате которых происходят скачкообразные изменения напряжения на клеммах конденсатора, в связи с чем номинальное напряжение конденсатора нужно выбирать так, чтобы в процессе работы изделия рабочее напряжение не превышало его более чем на 10%.

В процессе выбора необходимой емкости и рабочего напряжения нужно учитывать фактор резонанса, то есть когда значения напряжения вспомогательной обмотки электродвигателя и конденсатора находятся в околорезонансной точке. В этом случае происходит повышение напряжения на клеммах изделия.

Предельное напряжение на клеммах пускового конденсатора должно быть не более 450В, а его емкость выбирается, как правило, в два и более раз больше емкости рабочего конденсатора.

Как показывает практика, на каждые 100 Вт мощности электродвигателя требуется около 6-7 мкФ.

В случае, если не удается подобрать емкость в одном корпусе, допускается комбинирование путем параллельного соединения конденсаторов Собщ=С1+С2….+Сn.

При правильно подобранном конденсаторе мощность трехфазного двигателя, включенного в однофазную сеть, не должна уменьшиться более чем на 30%.

Читайте также  Как рассчитать источник бесперебойного питания?

Область применения конденсаторов для асинхронных двигателей

Таблица: Область применения конденсаторов для асинхронных двигателей

рабочий пусковой
Применение В схемах асинхронных электродвигателей В схемах асинхронных электродвигателей
Тип подключения Последовательно со вспомогательной обмоткой электродвигателя Параллельно рабочему конденсатору
В качестве Является фазосмещающим элементом
Предназначение Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя Позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя
Время включения В процессе работы электродвигателя В момент пуска электродвигателя

Существуют две основные области применения конденсаторов для асинхронных электродвигателей.

1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть

В случае когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения: «звезда» и «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».

Приблизительный расчет для данного типа соединения производится по следующей формуле:

Сраб.=k*Iф/Uсети

где:

  • k – коэффициент, зависящий от соединения обмоток.
  • – номинальный фазный ток электродвигателя А.
  • Uсети – напряжение однофазной сети В.

Для схемы соединения «Звезда» k=2800

Для схемы соединения «Треугольник» k=4800

Для определения пусковой емкости Спуск. исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.

Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.

Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.

Схема подключения

Рис. 1

Рис 1. Схема включения в однофазную сеть трехфазного асинхронного двигателя с обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):

  • B1 Переключатель направления вращения (реверс)
  • В2 — Выключатель пусковой емкости;
  • Ср — рабочий конденсатор;
  • Cп — пусковой конденсатор;
  • АД — асинхронный электродвигатель.

2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым.

При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. конденсаторного асинхронного электродвигателя по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю.

Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов.

Читайте также  Как рассчитать солнечную электростанцию для дома?

Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

Рассчитать пусковой конденсатор для однофазного электродвигателя

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.
Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей.

Варианты схем включения — какой метод выбрать?

В зависимости от способа подключения конденсатора к двигателю различают такие схемы с:

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором.

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле.

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время. Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле. Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.
Это связано с принципом работы асинхронного двигателя, когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Читайте также  Как рассчитать индуктивность дросселя?

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором.

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики. Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами.

Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового. При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.
Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

Выводы:

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное видео о том, как подключить однофазный двигатель через конденсатор

11 Комментариев

Источник: https://elektrik24.net/elektrooborudovanie/elektrodvigateli/odnofaznye-elektrodvigateli/cherez-kondensator.html