Радиатор охлаждения для светодиодов своими руками

Содержание

Теплоотвод для светодиодов

Радиатор охлаждения для светодиодов своими руками

Светодиоды считаются одним из наиболее эффективных источников света, их световой поток доходит до фантастических значений, порядка 100 Лм/Вт. Люминесцентные лампы выдают в два раза меньше, а именно 50-70 Лм/Вт. Однако для долгой работы светодиода нужно выдерживать их тепловые режимы. Для этого применяются фирменные или самодельные радиаторы для светодиодов.

Зачем диодам нужно охлаждение?

Несмотря на высокие показатели светоотдачи светодиоды излучают света примерно на треть потребляемой мощности, а остальное выделяется в тепло. Если диод перегревается структура его кристалла нарушается, начинает деградировать, световой поток снижается, а степень нагрева лавинообразно увеличивается.

Причины перегрева светодиодов:

  • Слишком большой ток;
  • плохая стабилизация питающего напряжения;
  • плохое охлаждение.

Первые две причины решаются применением качественного источника питания для светодиодов. Такие источники часто называют драйвер для светодиода. Их особенность заключается не в стабилизации напряжения, а именно в стабилизации выходного тока.

Дело в том, что при перегреве сопротивление светодиода снижается и ток, протекающий через него, возрастает. Если в качестве блока питания использовать стабилизатор напряжения – процесс получится лавинообразным: больше нагрев – больше ток, а больший ток – это больший нагрев и так по кругу.

Стабилизируя ток, вы отчасти стабилизируете и температуру кристалла. Третья причина – это плохое охлаждение для светодиодов. Рассмотрим этот вопрос подробнее.

Решаем проблему охлаждения

Маломощные светодиоды, например: 3528, 5050 и им подобные отдают тепло за счёт своих контактов, да и мощность у таких экземпляров гораздо меньше. Когда мощность прибора возрастает, появляется вопрос отвода лишнего тепла. Для этого применяют системы пассивного или активного охлаждения.

Пассивное охлаждение – это обычный радиатор, выполненный из меди или алюминия. О преимуществах материалов для охлаждения ходят споры. Достоинством такого типа охлаждение является – отсутствие шума и практически полное отсутствие необходимости его обслуживания.

Установка LED с пассивным охлаждением в точечный светильник

Активная система охлаждения – это способ охлаждения с применением внешней силы для улучшения отвода тепла. В качестве простейшей системы можно рассмотреть связку радиатор + кулер. Преимуществом является то, что такая система может быть значительно компактнее чем пассивная, до 10 раз. Недостатком — шум от кулера и необходимость его смазки.

Как подобрать радиатор?

Расчет радиатора для светодиода процесс не совсем простой, тем более для начинающего. Для его выполнения нужно знать тепловое сопротивление кристалла, а также перехода кристалл-подложка, подложка-радиатор, радиатор-воздух. Чтобы упростить решение многие пользуются соотношением 20-30 см2/Вт.

Это значит, что на каждый ватт LED света нужно использовать радиатор площадью порядка 30 см2.

Естественно, такое решение не является уникальным. Если ваша осветительная конструкция будет использоваться в подвальном прохладном помещении можно взять меньшую площадь, но при этом убедитесь, что температура светодиода в пределах нормы.

Предыдущие поколения LED комфортно чувствовали себя при температуре кристалла 50-70 градусов, новые светодиоды могут переноситьтемпературу до 100 градусов. Проще всего определить – прикоснуться рукой, если рука едва терпит – всё в порядке, а если кристалл может вас обжечь – принимайте решение для улучшения условий его работы.

Считаем площадь

Допустим мы имеем светильник мощностью 3Вт. Площадь радиатора для светодиода 3Вт, согласно описанному выше правилу будет равна 70-100см2. С первого взгляда может показаться большой.

Но рассмотрим расчет площади радиатора для светодиода. Для плоского пластинчатого радиатора площадь считается:

a * b * 2 = S

Где a, b – длины сторон пластины, S – полная площадь радиатора.

Откуда взялся коэффициент 2? Дело в том, что у такого радиатора две стороны и они равносильно отдают тепло окружающей среде, поэтому полная полезная площадь радиатора равна площади каждой из его сторон. Т.е. в нашем случае нужна пластина с размерами сторон 5*10см.

Для ребристого радиатора полная площадь равна – площади основания и площадям каждого из рёбер.

Охлаждение своими руками

Простейшим примером радиатора будет «солнышко», вырезанное из жести или листа алюминия. Такой радиатор может охладить 1-3Вт светодиодов. Скрутив два таких листа между собой через термопасту, можно увеличить площадь теплоотдачи.

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.

Сделать своими руками радиатор для светодиода на 10W таким образом будет невозможно. Поэтому можно применить для таких мощных источников света радиатор от центрального процессора компьютера.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.

Площадь радиатора для 10Вт светодиода будет довольно большой – порядка 300см2. Хорошим решением будет использование готовых алюминиевых изделий. В строительном или хозяйственном магазине вы можете приобрести алюминиевый профиль и использовать его для охлаждения мощных светодиодов.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере. На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см2. Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ – это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ – это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Выводы

Как вы могли убедится радиатор для светодиода можно найти как в магазине, так и порывшись в своих старых приборах, или просто в залежах всяких мелочей. Не обязательно использовать специальное охлаждение.

Площадь радиатора зависит от ряда условий, таких как влажность, температура окружающего воздуха и материал радиатора, но при бытовом решении ими пренебрегают.

Всегда уделяйте особое внимание проверке тепловых режимов ваших устройств. Таким образом вы обеспечите их надёжность и долговечность. Можно определять температуру рукой, но лучше приобретите мультиметр с возможностью её измерения.

Оцените, пожалуйста, статью. Мы старались:) (25,00

Источник: https://1000eletric.com/teplootvod-dlya-svetodiodov/

Изготавливаем своими руками радиатор для светодиодов

Радиатор охлаждения для светодиодов своими руками

Светодиоды появились всего несколько лет назад. Но они уже успели закрепить за собой лидерские позиции на рынке осветительной продукции. Они могут применяться не только в системах освещения, но и в различных поделках или любительских схемах. Когда имеешь дело с led, нужно обязательно позаботиться о вариантах охлаждения. Одним из способов охлаждения светодиодов является установка радиатора.

Читайте также  Освещение в бане в парилке светодиодами

Радиаторы для охлаждения светодиодов

Наша статья раскроет вам все тайны, как можно правильно и при этом своими руками собрать устройство для охлаждения.

Зачем необходим теплоотводник

Прежде чем приступить к самостоятельной сборке теплоотводника для светодиодов, необходимо знать особенности самого источника света.
Светодиоды представляют собой полупроводники, которые имеют две ножки (“+” и “-”) т.е. они обладают полярностью.

Светодиоды

Чтобы правильно изготовить для них радиатор, необходимо провести определенный расчет. В первую очередь этот расчет должен включать измерения напряжения, а также силу тока. Кроме этого необходимо помнить, что любое электроемкое устройство, включая светодиоды, отличает тенденцией к нагреванию. Поэтому здесь и нужна система охлаждения.
Проводя расчет, помните — лишь 1/3 от указанной мощности источника света будет преобразоваться в световой поток (например, 3-3,5 из 10w). Поэтому основная часть составит тепловые потери. Для того чтобы минимизировать теплопотери и используют радиаторы.

Обратите внимание! Перегревание светодиода приводит к уменьшению его срока эксплуатации. Поэтому использование радиатора позволяет еще и продлить «жизнь» источнику света.

Поэтому схемы светодиодов иметь комплекс охлаждения всех основных элементов.
Сегодня для охлаждения элементов электросхемы, в которую входят светодиоды, можно использовать три варианта теплоотведения:

  • через корпус прибора (не всегда можно реализовать);
  • через печатную плату. Охлаждение ведется через неосновные проводящие дорожки, по которым течет ток;
  • с помощью радиатора. Он подходит как к платам, так и к светодиодам.

Обратите внимание! В последней ситуации необходимо правильно провести расчет того, какой именно площади он должен быть.

Радиатор на светодиодах

Самым эффективным способом охлаждения светодиодов является использование радиатора, который легко можно соорудить самостоятельно. Главное помните, что на работу теплоотводчика влияет форма и количество ребер.

Особенности конструкции теплоотводчиков

Озадачившись собственноручно собрать радиатор, подходящий для светодиодов, многие задаются вполне закономерным вопросом «какой лучше?». Ведь сегодня существуют две группы теплоотводчиков, которые различаются по своим конструкционным особенностям:

  • игольчатые. Чаще применяются для системы охлаждения естественного типа. Такие модели применяются для мощных светодиодов;

Игольчатый радиатор

  • ребристые. Используются в системах принудительного охлаждения. Их выбирают в зависимости от геометрических параметров. При этом они могут применяться и для охлаждения мощных светодиодов.

Ребристый радиатор

Выбирая тип теплоотводчика необходимо помнить, что игольчатый пассивный аппарат превышает эффективность ребристой модели на 70%.
Радиатор любой конструкции (ребристой или игольчатой) может иметь различную форму:

  • квадратную;
  • круглую;
  • прямоугольную.

Вариант радиатора, подходящего для светодиодов, следует выбирать в зависимости от потребностей в системе охлаждения.

Особенности вычислений

Расчет схемы для создания своими руками радиатора всегда следует начинать с подбора элементной базы. Не забывайте, что номинал здесь должен отвечать не только потенциалу собираемого теплоотводчика, но и предотвращению создания дополнительных потерь. Иначе самодельный аппарат будет иметь низкую эффективность. И в первую очередь для этого необходимо провести расчет площади радиатора.
Что должен включать расчет такого параметра, как площадь:

  • модификация аппарата;
  • какая имеется площадь рассеивания;
  • показатели окружающего воздуха;
  • материал, из которого изготавливается теплоотводчик.

Такие нюансы необходимо учитывать тогда, когда проектируется новый радиатор, а не переделывается старый. Самым важным для самостоятельно сборки теплоотводника будет показатель максимально допустимого рассеивания мощности теплообменного элемента.Чтобы рассчитать площадь радиатора существует два способа.

Первый метод расчета. Для того чтобы определить требуемую площадь, нужно использовать формулу F = а х S х (T1 – T2), где:

  • F — тепловой поток;
  • S – площадью поверхности теплоотводчика;
  • T1 — показатель температуры среды, которая отводит тепло;
  • T2 — температура, которую имеет нагретая поверхность;
  • а – коэффициент, отражающий теплоотдачу. Данный коэффициент для неполированных поверхностей условно принимается равным 6-8 Вт/(м2К).

Длина окружности

Используя этот способ расчета необходимо помнить, что пластина или ребро имеют две поверхности для отвода тепла. При этом расчет поверхности иглы проводится с помощью длины окружности (π х D), которую нужно умножить на показатель высоты.
Второй метод расчета. Здесь используется несколько упрощенная формула, выведенная экспериментальным путем. В данном случае используется формула S = [22 – (M x 1,5)] x W, где:

  • S — площадь теплообменника;
  • M – незадействованная мощность светодиода;
  • W – подведенная мощность (Вт).

При этом если будет изготавливаться ребристый алюминиевый аппарат, можно использовать в расчетах данные, которые получили тайванские специалисты:

  • 60 Вт – от 7000 до 73000 см2;
  • 10 Вт – около 1000 см2;
  • 3 Вт – от 30 до 50 см2;
  • 1 Вт – от 10 до 15 см2.

Но в такой ситуации необходимо помнить, что приведенные выше данные подходят к климатическим условиям Тайваня. В нашем случае их стоит брать только лишь при проведении предварительных вычислений.

Материал для изготовления теплоотводчика

Срок службы светодиодов непосредственно зависит от того, какой материал задействован в полупроводнике, а также от качественности работы системы охлаждения.
При выборе материала для теплоотводчика, необходимо руководствоваться следующим:

  • материал должен иметь теплопроводность не менее 5-10 Вт;
  • уровень теплопроводности должен быть выше 10 Вт.

В связи с этим, для изготовления теплоотводчика стоит использовать такие материалы:

  • алюминий. Алюминиевый вариант на сегодняшний день для охлаждения светодиодов используют чаще всего. Но при этом алюминиевый теплоотводчик имеет существенный минус – состоит из ряда слоев. В результате такого строения алюминиевый аппарат провоцирует тепловые сопротивления. Их преодолеть можно только с помощью дополнительных теплопроводных материалов, в роли которых может выступать изоляционные пластины;

Обратите внимание! Алюминиевый радиатор, несмотря на свой недостаток, отлично справляется с отводом тепла. Здесь используется алюминиевая пластинка, которая обдувается вентилятором.

Алюминиевый радиатор

  • керамика. Керамические теплоотводчики имеют специальные трассы, по которым проводится ток. К этим же трассам припаиваются светодиоды. Такие изделия способны отводить в два раза больше тепла;
  • медь. Здесь имеется медная пластинка. Ее отличает более высокая теплопроводность, нежели у алюминия. Но медь уступает алюминию в технических характеристиках и весе. При этом медь — не податливый металл, а после обработки остается много обрезков;

Радиатор из меди

  • пластмасса. К достоинствам стоит отнести доступную стоимость, а также высокий уровень технологичности. При этом в минусах здесь меньшая теплопроводность.

Как видим, самым оптимальным вариантом по цене и качеству будет изготовление своими руками радиатора для светодиодов из алюминия. Рассмотрим несколько способов того, как можно сделать теплоотводчик для светодиодов.

Каким образом изготавливаются теплоотводчики

Не все радиолюбители с охотой берутся за изготовление подобных устройств. Ведь оно будет выполнять ведущую роль. От того, насколько качественно будет сделан своими руками теплоотводчик, зависит срок эксплуатации осветительной установки, выполненной из светодиодов. Поэтому многие предпочитают не рисковать и покупать аппараты для системы охлаждения в специализированных магазинах.

Самодельный радиатор для диодов

Но бывают ситуации, когда нет возможности купить, но его можно изготовить из подручных средств, которые без проблем отыщутся в домашней лаборатории любого радиолюбителя. И здесь подходят два способа изготовления.

Первый способ самостоятельной сборки

Самой простой конструкцией для самодельного радиатора, конечно же, будет круг. Его можно вырезать следующим образом:

  • из листа алюминия вырезаем круг и делаем на нем необходимое количество надрезов;

Разрезаный круг из алюминия

  • далее отгибаем немного сектора. В результате получается некое подобие вентилятора;
  • по осям необходимо отогнуть 4 усика. С их помощью устройство будет крепиться к корпусу лампы;
  • светодиоды на таком радиаторе можно закрепить при помощи термопасты.

Готовый радиатор для диодов круглой формы

Как видим, это достаточно простой способ изготовления.

Второй способ самостоятельной сборки

Охлаждающий аппарат, который будет подключаться к светодиодам, можно самостоятельно сделать их куска трубы, которая имеет прямоугольное сечение, а также из алюминиевого профиля. Здесь вам понадобятся:

  • пресс-шайба с диаметром 16 мм;
  • труба 30х15х1,5;
  • термопаста КТП 8;
  • Ш-образный профиль 265;
  • термоклей;
  • саморезы.

Делаем радиатор следующим образом:

  • в трубе просверливаем три отверстия;

Вариант трубы для радиатора

  • далее сверлим профиль. С его помощью будет осуществляться крепление к лампе;
  • светодиоды крепим к трубе, которая будет выступать в качестве основания теплоотводчика, с помощью термоклея;
  • в местах соединения элементов радиатора наносим слой термопасты КТП 8;
  • осталось собрать конструкцию с помощью саморезов, оснащенных пресс шайбой.

Данный способ будет несколько сложнее в реализации, чем первый вариант.

Заключение

Зная, что собой представляет радиатор, подключаемый к светодиодам, его вполне можно изготовить своими руками из подручных средств. Его правильная сборка поможет вам не только эффективно охлаждать осветительную установку, но и избежать ситуации снижения сроков эксплуатации светодиодов.

Полезные материалы

Источник: https://1posvetu.ru/montazh-i-nastrojka/izgotavlivaem-svoimi-rukami-radiator-dlya-svetodiodov.html

Радиатор для светодиодов: назначение, виды, делаем своими руками

Радиатор охлаждения для светодиодов своими руками

При сборке светодиодного прибора немаловажно правильно выбрать, спроектировать и установить систему для его охлаждения — радиатор для светодиодов. Если тепловой режим для работы светодиода подобран неверно — это впоследствии приведет к его перегреву и выходу из строя.

Читайте также  Светодиод полярность обозначения

Зачем нужно охлаждать светодиод

Мнение о том, что светодиод не нагревается ошибочно. Оно строится на том, что прикасаясь к такому маломощному прибору, не чувствуешь тепла. Согласно, закона сохранения энергии: энергия не появляется из ничего и не пропадает бесследно, а преобразуется из одного вида в другой.

Светодиоды, как твердотельные источники света, излучают видимую часть спектра и выделяют при этом тепло. Вследствие термоэлектрических явлений, происходящих в полупроводниковых светодиодах, выделяется тепло. В прямой зависимости от температуры нагрева светодиодов меняются его показатели и характеристики.

Такая сильная зависимость показателей от температуры приводит к тому, что:

Рис. 1. График зависимости показателя относительного светового потока от температуры перехода (светодиод MKR)

  • полупроводниковый переход при нагреве светодиодного кристалла деградирует, и он быстро изнашивается, а срок эксплуатации снижается;
  • тепловой рубеж у светодиодов, после которого наступает пробой, достигается после повышения температуры до 150°С. В зависимости от применяемых материалов, изменяется количество светового потока и срока износа;
  • постепенно уменьшается количество светового потока, что отражают кривые зависимости, изображенные на Рис.1;
  • с изменением температуры меняется и величина прямого падения напряжения на светодиоде. При нагреве источника света увеличивается показатель прямого падения напряжения. На графиках кривыми изображается такая зависимость.

Перечисленные выше причины являются серьезным поводом, чтобы обеспечить отвод тепла от светодиодного прибора.

Как охлаждать светодиод

Эффективным способом охлаждения кристалла будет отвод избыточного тепла, используя явление теплопроводности.

В радиоэлектронике для теплоотвода применяют радиаторы, с помощью которых тепло отводят в атмосферу двумя способами. При первом способе охлаждения – пассивном, одна часть тепловых инфракрасных волн излучается в атмосферу, а вторая уходит благодаря конвекции теплого воздуха от радиатора (Рис. 2).

В светодиодах с невысокой мощностью при этом пассивном способе тепловой конвекции тепло проводится через металлические контакты, показатель теплопроводности которых позволяет в достаточном объеме отводить его излишки от кристалла. Более длинные контакты позволяют лучше отводить и рассеивать тепло по плате.

Недостатком пассивного метода является большой размер, вес и высокая стоимость устанавливаемого теплоотвода.

Рис. 2. Пассивный способ тепловой конвекции

Турбулентная конвекция относится ко второму активному способу охлаждения. Для вывода тепла из мощных светодиодных приборов на радиаторе закрепляется смонтированный на подложке кристалл.

Размеры, форма и количество ребер радиатора напрямую зависят от мощности диода. В систему встроены механические устройства и вентиляторы, создающие активные потоки воздуха (Рис.3). К примеру, лампы мощностью 20 ватт в фарах автомашин бизнес-класса принудительно обдуваются встроенными куллерами. Этот способ более производительный, но применим только в условиях хорошей погоды и отсутствии большой запыленности помещения.

Рис.3. Вентиляторы для активного способа охлаждения

Установка радиатора снижает процесс перегрева светодиода, что позволяет в несколько раз увеличить срок его эксплуатации.

Типы радиаторов

Перед сборкой устройства необходимо определиться с типом используемого радиатора:

  • штыревой или игольчатый (Рис.5);
  • ребристый (Рис.4).

При необходимости естественного охлаждения источника света применяют первый тип, а в случае принудительного — второй. Обычно штыревой, при одинаковых размерах с ребристым, производительнее на 70 %.

Рис.4. Радиатор ребристый

Радиатор ребристого типа в основном применяют при активном способе отвода тепла. Но при определенных геометрических параметрах его используют в пассивном способе.

Рис.5. Радиатор игольчатый

Когда дистанция между иглами равна 4 мм, устройство предназначается для естественного теплоотвода, а при зазоре 2 мм радиатор укомплектовывают вентилятором.

Материалы для радиаторов

Для долгой и производительной работы светодиода очень важно подобрать качественный материал для радиатора. Его выбирают по определенным требованиям и показателям. Показатель теплопроводности должен находиться в пределах 6-10 Вт. При более низком показателе материал не проведет тепло, которое попадает в воздух.

При показателе теплопроводности выше 10 Вт, эффективность работы устройства по техническим показателям не возрастет, а затраты на материал будут лишней тратой денег. Наиболее подходящими материалами при производстве считаются алюминий, керамика, медь.

В редких случаях изготавливают прибор из материалов, включающих в состав пластмассы, способствующие рассеиванию тепла.

Светодиодный радиатор чаще всего изготавливают из прессованного алюминия, поскольку он лучше других материалов отводит тепло. Главным изъяном алюминиевого радиатора для светодиодов считают большое количество слоев в изделии, что способствует появлению переходного теплового сопротивления. Что бы преодолеть такое сопротивление, необходимо добавить в изделие материалы, обладающие теплопроводными свойствами и заполняющие воздушные прослойки: клеящие вещества, изоляционные пластины и др.

Преимущество медного радиатора, по сравнению с алюминиевым, в более высокой теплопроводности. Недостаток его в более тяжелом весе изделия и меньшей податливости металла. Метод прессования медного и обработка резанием очень затратные способы изготовления.

Более приемлемым вариантом отвода тепла является подложка из керамики. К ее токоведущим трассам припаивают светодиоды, что позволяет увеличить теплоотвод в два раза по сравнению радиаторами, изготовленными из металла.

Рассеивающая тепло пластмасса по стоимости дешевле алюминиевого изделия. Так как теплопроводность самой пластмассы составляет — 0,2 Вт/м, то достичь приемлемого показателя возможно, только за счет добавления наполнителей. Если алюминиевый радиатор заменить на пластмассовый, такого же размера, то температура в зоне подвода увеличится на 5%.

Проводим расчет площади радиатора

Обратите внимание, для правильного расчета площади радиатора учитывают параметры полезной площади рассеивания, а не поверхностной площади.

При подсчете полезной площади (S) включают сумму площадей ребер и подложки в квадратных метрах. Нужно учесть, что у каждого ребра две отводящие поверхности. В таком случае S теплоотвода прямоугольной формы S — 1 см2 составляет — 2 см2.

В результате проводимых экспериментов была выведена формула расчета требуемой площади теплоотвода:

S = (22 – (M x 1.5)) x W, в которой

S – площадь теплоотвода радиатора; W –мощность подведенная (Вт); M –мощность светодиода. Для пластинчатых радиаторов сделанных из алюминия можно применить следующие примерные данные рассчитанные специалистами из Тайвани:

  • 1 Вт: 10 ÷ 15 см2;
  • 3 Вт: 30 ÷ 50 см2;
  • 10 Вт: приблизительно 1000 см2;
  • 60 Вт: 7000 73000 см2.

Поскольку диапазон указанных данных имеет большой разбег и определены они в условиях для климата южной страны, то величины не являются абсолютно точными и подходят для предварительного подсчета.

Более подробную информацию о расчете площади радиатора можно получить, просмотрев видео.

Как сделать радиатор своими руками

Радиатор — важная деталь в работе LED, от его качества зависит долговечность светодиода. Сделать своими руками радиатор из подручных материалов можно следующим способом:

  1. Самодельно. Вырезав круг из листового алюминия, по краям делают надрезы. Как показано на Рис.6, усики отгибают как у вентилятора. 4 усика отдельно отгибают по осям теплоотвода для последующего прикрепления конструкции к основанию светодиода. Закрепить конструкцию можно саморезами, предварительно нанеся термопасту.

    Рис.6. Самодельный алюминиевый радиатор.

  2. При втором способе используют профиль (из алюминия) и отрез трубы с прямоугольным сечением 30х15х1,5. (Рис.7). Дополнительные материалы: профиль 265, пресс-шайба 16 мм, термоклей, термопаста, саморезы. Сначала просверливают в трубе 3 отверстия 8 мм, потом в профиле – 3,8 мм – для последующего закрепления саморезами. Термоклеем клеят источник света к трубе, как к основанию, предварительно наносят термопасту в местах приклеиваемых частей. Используя саморезы и пресс-шайбы собирают всю конструкцию.

Чтобы соединение получилось прочным, светодиод после нанесения клея придавливают на четыре часа не тяжелым грузом.

Рис.7. Профильная труба для радиатора

Выбирая радиатор для светодиода стоит обязательно учесть тип материала из которого он состоит и его площадь. Не правильно подобранный радиатор существенно сократит срок службы светодиода, а в некоторых случаях может и вовсе вывести его из строя в первые часы работы.

Источник: http://ledno.ru/svetodiody/radiator-dlya-led.html

Как сделать радиатор охлаждения своими руками — Металлы, оборудование, инструкции

Радиатор охлаждения для светодиодов своими руками

Светодиоды появились всего несколько лет назад. Но они уже успели закрепить за собой лидерские позиции на рынке осветительной продукции.

Они могут применяться не только в системах освещения, но и в различных поделках или любительских схемах. Когда имеешь дело с led, нужно обязательно позаботиться о вариантах охлаждения.

Одним из способов охлаждения светодиодов является установка радиатора.

Радиаторы для охлаждения светодиодов

Наша статья раскроет вам все тайны, как можно правильно и при этом своими руками собрать устройство для охлаждения.

Какой нужен радиатор для охлаждения светодиода?

Радиатор охлаждения для светодиодов своими руками

Светодиоды, которые появились на рынке радиоэлектроники сравнительно недавно, уже прочно заняли лидерские позиции по отношению к другим источникам света. Они наиболее экономичны в плане расхода электроэнергии, более компактны и удобны в использовании и обладают меньшим выделением тепла.

Читайте также  Как соединить светодиоды в цепь?

И все же, насколько бы высокотехнологичным ни был светодиод, повышения температуры при его работе не избежать. К тому же при нагреве подобный LED-элемент в силу своих конструктивных особенностей начинает терять силу светового потока.

Конечно, если это обычный DIP-светодиод с двумя ножками-контактами, ему вполне хватает внешнего охлаждения. Но если взять более мощные элементы, то тут уже стоит задуматься о радиаторе охлаждения для светодиодов, который бы помог отведению тепла от источника света.

Если обратить внимание на подобные устройства охлаждения в магазинах, то можно понять, насколько велика их стоимость. Что же тогда делать?

Остается разобраться, возможно ли самому, своими руками сделать радиатор для определенного светодиода или группы светодиодов, как это выполнить, и насколько это сложно. Вот сейчас мы постараемся решить этот вопрос.

А нужен ли радиатор?

Для начала есть смысл понять, нужен ли охлаждающий радиатор для светодиода и если да, то зачем.

Дело в том, что по эффективности, если брать слаботочные диодные излучатели, их коэффициент полезного действия составляет лишь 15–17%. При этом понятно, что остальная энергия уйдет на выделение тепла. Конечно, КПД более мощных светодиодов (больше 1 ватта) в 2 раза выше, но ведь и энергии они потребляют больше.

Так что любой подобный световой прибор в итоге выделяет некое количество тепла, которое должно куда-то уйти. К примеру, в световом диоде СМД2835 контакт анода составляет чуть меньше половины компонента, он-то и обеспечивает необходимый отток тепла, и это притом, что он является слаботочным. Получается, что он уже с радиатором. А вот мощные светодиоды требуют к себе большего внимания.

При постоянно повышенной температуре кристалла длина волн излучения смещается, в результате чего снижается яркость и сильно уменьшается срок службы. Выходит, что без радиатора при самостоятельном монтаже схемы с применением мощных светодиодов никак не обойтись.

Существующие виды радиаторов

Радиаторы для светодиодов

Охлаждающие устройства делятся по конструктивным особенностям на 3 основных типа и могут иметь круглую, квадратную или прямоугольную форму, независимо от того, пластинчатый это радиатор, стержневой или ребристый.

Выбирая охладитель или изготавливая его собственноручно, нужно обратить особое внимание на толщину его основания, ведь как раз оно примет на себя основное тепло, которое затем равномерно распределит по другим частям радиатора.

На выбор формы охлаждающего приспособления влияет устройство самого будущего прибора, а именно то, как он будет охлаждаться, будет ли вентиляция принудительной или естественной.

От этого зависит расстояние между пластинами. При условии отсутствия принудительной вентиляции оно не может быть меньше 4 миллиметров. Если же условие не соблюдено, то толку от подобного устройства охлаждения не будет.

А вот форма значения для охлаждения не имеет. Примером могут послужить светодиодные лампы. Проектировщикам приходится, наверное, изрядно потрудиться, придумывая вариант, при котором теплоотвод не будет выходить за размеры и форму самой лампочки, не испортит внешнего вида и при этом эффективно выполнит свою работу. Иногда в таких случаях охлаждающее устройство крепится специальным теплопроводящим клеем непосредственно к печатной плате.

Исходный материал

Для изготовления теплоотвода в наши дни чаще всего используется алюминий. Все дело в том, что этот материал очень удобен для подобных целей, и при этом достаточно дешев. Но если имеют значение габариты изделия, тогда лучше меди вряд ли удастся что-то найти, т. к. она обладает большей проводимостью тепла, а значит и теплоотвод по размеру получится в 2 раза меньше.

Но ведь не только эти два материала подходят для изготовления охлаждающего устройства? Имеет смысл понять, из какого еще сырья можно сделать теплоотвод и в чем их различия.

Алюминий

Алюминиевый радиатор

По уровню теплопроводности средний показатель колеблется в диапазоне от 200 до 240 Вт/м*К, что превышает тот же параметр латуни и железа почти в 3 раза. В основном он зависит от наличия и количества примесей в алюминии. Конечно, это удобный в обработке металл, потому и столь распространен, но все же при условии, что корпус устройства мал, а охлаждение требуется приличное, алюминиевый радиатор уступает меди.

Медь

Показатель данного металла в 2 раза превышает теплопроводность алюминия, уступая пальму первенства лишь такому благородному металлу, как серебро, и составляет 400 Вт/м*К. Но при том, что медь так хорошо охлаждает, такие радиаторы встречаются довольно редко. Все дело в том, что она довольно дорога, если сравнивать с алюминием, да к тому же сложна в механической обработке и имеет большую массу.

Медный радиатор

Получается, если в лампу на светодиодах устанавливать медные охладители, то возрастет его цена, а это неприемлемо, т. к. в итоге фирма в условиях жесткого рынка станет неконкурентоспособна.

Керамика

Параметр теплопроводности близок к параметрам алюминия и составляет 175–235 Вт/м*К. Удобна керамика тем, что сама является диэлектриком, что немаловажно в электронных и электрических схемах.

И все же при подобной теплопроводности она проигрывает другому, очень удобному в обращении материалу.

Термопластик

Конечно, параметры теплопроводности термопластика немного ниже, чем у алюминия (от 5 до 40 Вт/м*К), но у него есть некоторые преимущества. Помимо диэлектрических свойств он еще очень легок и имеет низкую стоимость. Только вот при проектировке ламп на светодиодах мощнее 10 ватт он явно проигрывает алюминию и меди.

Охлаждение светодиодов большой мощности

Конечно, светодиоды, имеющие мощность выше 10 Вт и ниже 50 Вт, нет смысла обеспечивать принудительной вентиляцией – с их охлаждением могут вполне справиться радиаторы из меди или алюминия. А вот при большей мощности это становится проблематичным. Конечно, нет ничего невозможного, но имеет ли смысл оставлять естественное охлаждение при высокой мощности прибора, если вес только охлаждающего устройства будет 400 грамм и более?

В таком случае придется поразмышлять, как скомпоновать радиатор с небольшим кулером. Конечно, это создаст некоторые затруднения в плане оборудования отсечения питания в случае выхода из строя вентилятора, а также и его питания, но зато поможет снизить вес светодиодного светильника.

Выходит, что человек ставится перед выбором – либо тяжелый и габаритный, но сравнительно дешевый охлаждающий элемент, либо установка компактного радиатора, имеющего малый вес, с кулером, устройством питания и автоматикой отключения.

На это можно сказать, что как бы ни было хорошо устройство охлаждения, оно не обеспечит идеального теплового сопротивления. Вот как раз для его снижения и применяется специальная термопаста. Практическим опытом обосновано, что она достаточно эффективна, а потому и применяется повсеместно и в компьютерной технике, и в бытовой электронике. Если она хорошего качества, то у нее будет низкая вязкость и хорошая устойчивость к затвердеванию при повышении температуры.

Радиатор с кулером

Площадь элемента охлаждения

Рассчитать площадь охлаждающего элемента для светодиодной лампы можно двумя способами – проектным и поверочным.

Суть проектного состоит в том, чтобы определить геометрические размеры охлаждаемого прибора, а поверочный способ – действие от обратной точки, т. е. зная возможности радиатора по его размерам, нужно высчитать, на какой объем теплообмена он будет способен.

Конечно, решать, какой из вариантов наиболее приемлем, нужно отдельно в каждом конкретном случае, исходя из имеющихся данных, но при любом выборе необходимо понимать, что требуется решение точной математической задачи с формулами и множеством неизвестных. К тому же, кроме справочной литературы понадобятся данные графиков с подставлением к ним необходимых формул, а также учет не только размера и направленности решетки, которую имеет теплоотвод, но и внешних влияний.

А еще имеет смысл учесть страну-производителя светодиодов, т. к. китайцы часто «радуют» несоответствием заявленных характеристик реальным.

Формула расчета радиатора

Это естественно, что многим не хочется из-за пары приборов вникать в столь сложные дебри формул и таблиц, которых нужно пересмотреть огромное множество. Но как сделать расчет? Существует более упрощенный вариант вычислений. Конечно, он немного поверхностен и не учитывает некоторых факторов, но все же рассчитать размеры теплоотводящего элемента, хоть и примерно, поможет.

Если принять то, что S в данной формуле является площадью охлаждающего элемента (в кв. см), то выглядеть она будет следующим образом: Rθsa = 50/√S.

Необходимо подставить в нее площадь радиатора, не забывая учесть и ребра, и боковые грани, и можно получить данные элемента охлаждения по его теплопроводному сопротивлению.

Ну а по следующей формуле можно вычислить параметры мощности рассеивания: Pт = (Tj-Ta)/Rθja.

Т. к. это наилегчайший способ вычисления, и он не учитывает множество нюансов, то получившиеся данные можно смело умножить на погрешность, т. е. на 0.7.

Источник: https://lampagid.ru/vidy/svetodiody/radiator