Проверка переходного сопротивления контактных соединений

Содержание

Металлосвязь. Измерение металлосвязи и проверка наличия цепи заземления

Проверка переходного сопротивления контактных соединений

Заказать услугу или задать вопрос /Электролаборатория/Измерение металлосвязи

Электролаборатория компании Эколайф. Металлосвязь. Измерение металлосвязи и проверка наличия цепи заземления. Протокол металлосвязи или наличия цепи между элементами заземленной установки.

1. Особенности измерения металлосвязи2. Почему возрастает переходное сопротивление?3. Как связаны проверка металлосвязи и электротравматизм?4. Влияние металлосвязи на энергосбережение5. Металлосвязь и пожарная безопасность: как уберечься от возгорания?

6. Фиксация результатов измерений металлосвязи

Регулярные проверки на наличие заземления позволяют создать безопасную среду для работы людей и оборудования. Они способны решить множество проблем, в том числе:

  • свести на нет риск случайного поражения электрическим током;
  • предотвратить порчу оборудования и техники;
  • снизить расходы на оплату потреблённой электроэнергии за счет устранения утечек последней;
  • исключить возможность возникновения очагов возгорания из-за перегревания контактных участков.

Очевидно, что на производстве вокруг нас расположено немало металлических предметов, способных проводить ток. Во избежание несчастных случаев следует заземлить каждый из них. В первую очередь, речь идёт о металлоконструкциях самого здания, коробах вентиляционных шахт, трубах водопровода и канализации, а также главной заземляющей шине.  Всё это в совокупности представляет собой ОСУП – основную систему уравнивания потенциалов.

Специалисты выделяют еще одну систему, дополнительную (ДСУП). В её состав входят светильники, электрооборудование, металлические корпуса и детали электрощитов, контакты заземления на розетках и выключателях. Как правило, все эти элементы связываются между собой через защитные проводники и РЕ-шины электрощита для выравнивания общего потенциала (заземления).

При проверках как раз и обращают внимание на наличие общей цепи, величину сопротивления в местах контакта. То есть, проверяют связь между заземляемыми элементами и заземляющим устройством.

Особенности измерения металлосвязи

Специалисты  используют термин «металлосвязь» для обозначения общей цепи между заземляющими и заземленными элементами. Проверка наличия такой цепи зовётся проверкой металлосвязи.

Смысл этого мероприятия сводится к измерению переходных сопротивлений в тех местах, где заземляемые элементы контактируют с заземляющими проводниками. На примере обычного электрощита это выглядит следующим образом:

  1. Дверцы, корпус, розетки и РЕ-шины – это нетоковедущие части, то есть они не должны проводить электричество. Для этого их заземляют.
  2. Во время проверки металлосвязи измеряют значение сопротивления в местах контакта и сравнивают с нормативными показателями. В идеале значение не должно быть выше 0,1 Ом.
  3. Проверяющий также отслеживает наличие обрывов заземляющей связи – в этом случае сопротивление будет выше предельно допустимой величины.

Проверка производится с помощью измерителя малых сопротивлений, достаточно чувствительного, чтобы обнаружить даже столь малые величины. В нашей лаборатории контролирующие инженеры вооружены измерителями «Вымпел», а также многофункциональными устройствами Fluke 1652, Fluke 1653b и Kyoritsu KEW 6016.

Все результаты фиксируются и заносятся в итоговый протокол. Для экспресс-диагностики возможно использование тепловизоров: они наглядно демонстрируют греющиеся контакты, сигнализируя тем самым о наличии проблем в металлосвязи.

Почему возрастает переходное сопротивление?

Под термином «контактное соединение» скрываются два металлических элемента, соприкасающиеся между собой. Даже если их отполировать до зеркального блеска, от микроскопических бугорков избавиться не удастся. Площадь соприкосновения этих шероховатостей может меняться под воздействием внешних причин: например, разболталось винтовое соединение – и пластины удалились друг от друга, поднялась температура, и из-за расширения металла поверхности сильнее прижались друг к другу…

На металлические предметы постоянно действует вибрация, перепады температур. Корпуса и другие элементы могут подвергаться случайным механическим повреждениям. Наконец, влага, содержащаяся в воздухе, вызывает коррозию металла, что также отрицательно сказывается на качестве креплений. Всё это приводит к снижению площади соприкосновения металлических поверхностей, в результате чего растёт сопротивление.

Если вовремя не заметить подобные отклонения, возможны многочисленные ЧП: от поражения человека током при касании металлических деталей до возгораний или выхода из строя ценной аппаратуры.

На величину сопротивления влияет и состояние контактов: как известно, содержащийся в воздухе кислород постепенно окисляет металлы, причём скорость образования окисных плёнок зависит от вида металла. Так, проводники из алюминия окисляются быстрее, чем медные, а значит, при прочих равных условиях, сопротивление в них будет расти тоже быстрее.

Как связаны проверка металлосвязи и электротравматизм?

Если прикоснуться к предметам с разным электрическим потенциалом, то через тело пройдет ток от элемента с наиболее высоким значением к элементу с наиболее низким. Именно поэтому нельзя допускать нарушения цепи заземления – иначе даже неосторожное прикосновение может обернуться травмами или даже летальным исходом.

К примеру, при заземленном корпусе и отсутствии устройства защитного отключения, опасность будет определяться величиной переходных сопротивлений. Если значения малы, то произойдёт размыкание цепи. Человек будет спасён. Но в случае, если на линии установлен автоматический выключатель, произойдет утечка тока. Автомат не сработает, а человек, коснувшийся корпуса электрощита, получит травму.

Подобный сценарий опасен еще и тем, что при утечке происходит нагревание контактов, способное повлечь за собой возгорание и пожар. К тому же в этой ситуации ток будет буквально уходить в землю, постоянно увеличивая счета за электричество.

Если корпус не заземлен, но имеется устройство защитного отключения, то человек при касании получит ощутимый, короткий, но не опасный для жизни удар током. Для аппаратуры такой «подарок» может обернуться серьёзными поломками. Заземленный корпус с УЗО и вовсе избавит персонал от любых проблем, связанных с электричеством.

Именно поэтому контроль наличия металлосвязи так важен для обеспечения безопасности персонала на любых объектах, в том числе в жилых домах и производственных помещениях.

Влияние металлосвязи на энергосбережение

Высокие переходные сопротивления – это не только угроза здоровью и жизни людей, но и постоянный расход электроэнергии. Специалисты подсчитали, что при заземленном корпусе, защитном выключателе на 24 ампер и величине сопротивления 10 Ом при утечке в землю будет уходить более 116 кВт в сутки!  

Читайте также  Гильзы для соединения СИП проводов

При таких параметрах автомат не сработает, корпус будет пропускать ток, представляя серьёзную опасность для любого прикоснувшегося к нему человека. При этом сам контакт начнёт нагреваться, вызывая повышение температуры в изоляции, расположенных рядом пластмассовых деталях. Всё это – риски возникновения самовозгорания. Счётчик же продолжит наматывать киловатт-часы, расходуя средства в никуда. И так будет продолжаться, пока кто-то не обратит внимания на характерный запах гари или металлический корпус, бьющийся током.

Конечно, для иллюстрации использовалось преувеличенное значение переходного напряжения. На практике оно куда меньше, но и мест «пробоев» в пределах одного здания насчитывается десятки, а то и сотни. Все вместе они провоцируют серьёзные убытки, не говоря уж о риске порчи другого имущества.

Именно поэтому важно регулярно измерять с помощью микроомметра переходные сопротивления при заземлении, а также контролировать состояние контактных соединений с помощью тепловизора или пирометра. В местах фиксации превышения тепловых показателей следует устранить «пробои» и наладить металлосвязь.  

Металлосвязь и пожарная безопасность: как уберечься от возгорания?

Как уже было сказано, в контактных соединениях при утечке электроэнергии происходит выделение тепла. Степень нагрева зависит от ряда причин, в т.ч. числе особенностей металлической конструкции и крепежных элементов. Следует помнить, что контакты, нагреваясь, провоцируют возгорание изоляции и рядом расположенных деталей (например, пластиковых).  

Чтобы избежать чрезвычайного происшествия, достаточно регулярно проверять наличие металлосвязи с помощью инфракрасных тепловизоров или пирометров. Они способны зафиксировать отклонения на начальных стадиях и пресечь возможные очаги пожара. Просто задумайтесь: чтобы избежать возгорания иногда достаточно потуже затянуть болты и винты, очистить контактирующие поверхности от загрязнений и окислой плёнки. Профилактические осмотры и измерения – это то, без чего действительно нельзя обойтись в любой организации.

Фиксация результатов измерений

По результатам проверки все полученные значения обязательно фиксируются в протоколе проверки. В специальную таблицу заносят данные обследованного электрооборудования, указывают наименования осмотренных узлов, отмечают местоположение каждого элемента, их общее количество осмотренных мест, фиксируют наибольшие показатели переходного сопротивления.

Если в ходе проверки выявлены нарушения, например, обнаружено не заземленное оборудование или замечено превышение максимально допустимых показателей сопротивления, они также отражаются в протоколе и заносятся в дефектную ведомость.

Вместо заключения

Для неспециалистов важно помнить, что если нулевой проводник и заземление не совмещаются в одном проводе, то для всех металлических элементов оборудования требуется дополнительное заземление! Все групповые кабельные линии (за исключением разве что световых) для предотвращения ЧП необходимо оснастить автоматическими выключателями и устройствами защитного отключения (УЗО).

Регулярная проверка состояния контактных соединений металлических элементов и заземляющих проводников – еще один необходимый элемент гарантии безопасности. Следует регулярно подтягивать крепёжные соединения, убирать пыль, грязь и окислую плёнку с контактных поверхностей.

В ходе проведения электроизмерений инженеры проверяют и фиксируют величину переходного сопротивления – она не может превышать 0,1 Ом. В случае отклонения в большую сторону следует привести в порядок контактные площадки (очистить, затянуть болты и винты) во избежание несчастных случаев.

Если проверка выявила наличие незаземленных элементов, требуется безотлагательно провести подключение к СУП – системе уравнивания потенциалов. Это поможет сберечь оборудование, снизить риски возникновения очагов возгорания, свести к минимуму случаи электротравматизма.

Регулярные проверки наличия металлосвязи и измерение величины переходного сопротивления позволит выявить дефекты до того, как утечка тока приведёт к человеческим, техническим или финансовым потерям.

Конечно, любое электрооборудование имеет множество других узлов и контактных соединений, которые при наличии дефектов также могут привести к человеческим жертвам, возгоранию и пожару. Поэтому наши сотрудники в любой момент готовы провести экспресс-диагностику состояния электрощитов, чтобы обнаружить утечки и греющиеся контакты. Помните, лучше пресечь неприятность на корню, чем в дальнейшем разбираться с её последствиями.

С помощью современного оборудования диагностика проводится в максимально короткие сроки и никак не сказывается на рабочих процессах внутри предприятия. Чтобы обнаружить дефекты специалистам не потребуется отключать электроэнергию – всё, что нужно, покажут тепловые датчики и измерительные приборы.

К НАЧАЛУ СТРАНИЦЫ

Источник: https://vnt24.ru/izmerenie-metallosvyazi

Замер переходного сопротивления

Проверка переходного сопротивления контактных соединений

Переходное сопротивление характеризует противодействие свободному прохождению электрического тока в месте его перехода из одной детали в другую и через заземлитель в грунт. Замер переходного сопротивления выполняется для проверки состояния заземляющего контура и контактов при испытаниях на механическую износостойкость и устойчивость к токам КЗ.

Такие измерения требуются для контактов сборных шин, токопроводов, ошиновки распределительных устройств закрытого и открытого типа, высоковольтных выключателей, короткозамыкателей, сварных швов, разъединителей и других элементов электрической цепи. В целом для диагностики контактов выполняется осмотр узлов, простукиваются сварные швы, и измеряется величина переходного сопротивления. Она является определяющей и отражает работоспособность всей системы.

Задачи замеров переходного сопротивления

Измерение переходного сопротивления контактов позволяет:

  • определить качество контактных соединений;
  • проверить целостность проводников и отсутствие повреждений на промежутке от исследуемого объекта до заземлителя;
  • проконтролировать состояние цепи между заземляемыми и заземляющими элементами;
  • определить величину напряжения на корпусе проверяемого электрооборудования, находящегося в рабочем состоянии;
  • выяснить вероятность поражения людей электрическим током, перегрева и возгорания оборудования.

Проверка переходного сопротивления заземления позволяет выяснить, насколько быстро возникший в нештатной ситуации избыточный заряд будет передан специальному проводнику в грунте, и какое противодействие возникнет на его пути. Эти замеры необходимы для того, чтобы обеспечить безопасность эксплуатации электроустановки даже в условиях КЗ и в других случаях повышения напряжения, когда мощный потенциал нужно быстро сбросить за пределы установки.

Особенности измерений переходного сопротивления

Такие замеры выполняются совместно с другими проверками контактов и контуров заземления, к примеру, каждые полгода при визуальном осмотре и ежегодно при комплексной проверке состояния электроустановки. Но качество соединения с находящимся в грунте проводником можно проверить и независимо от графика. В частности, переходное сопротивление заземления измеряется:

  • при комплексной реконструкции системы или изменении ее структуры;
  • перед выполнением других работ, связанных с заземлением;
  • после ремонта оборудования.

Для проведения замеров используются сертифицированные приборы, измеряющие малые сопротивления – прошедшие государственную поверку микроомметры или контактомеры. Предельно допустимая величина переходного сопротивления для контактного соединения защитного проводника – 0,05 Ом. Превышение этого значения отражает неисправность связей и требует незамедлительного устранения неполадок.

Заказывайте профессиональные услуги по обеспечению электробезопасности вашего объекта в ИЦ «ПрофЭнергия».

Наши преимущества

Лицензия РосТехНадзора №5742

Лицензируемая организация ООО Инженерный центр ”ПрофЭнергия” гарантирует точность, объективность и достоверность результатов.

Читайте также  Варочная панель неразъемным соединением

Поверенные приборы и оборудование (СП №0889514)

Проверенные приборы и оборудование (СП №0889514): В нашей кампании используется только качественные приборы и оборудование.

Бесплатный выезд на объект и расчет сметы

Бесплатный выезд на объект и расчет сметы: Наши специалисты бесплатно приедут на объект и рассчитают стоимость.

На 25% выгоднее конкурентов

На 25% выгоднее конкурентов: У нас честные цены. А так же действуют индивидуальные скидки.

Кандидаты технических наук в штате

Кандидаты технических наук в штате: «ПрофЭнергия» имеет очень отлаженный коллектив квалифицированных инженеров с допусками ко всем видам проводимых работ.

Мы осуществляем проверку переходного сопротивления заземления с дальнейшим обслуживанием.

Наши лицензии позволяют осуществлять все необходимые замеры и испытания, а благодарственные письма, подтверждают высокий уровень оказанных услуг.

Для экономии времени наши специалисты могут бесплатно выехать на объект и оценить объем работ

Заказать бесплатную диагностику и расчет стоимости

Остались вопросы?

Для консультации по интересующим вопросам, или оформления заявки, свяжитесь с нами по телефону:

+7 (495) 181-50-34 

От 10 900р

От 14 500р

От 18 900р

От 19 800р

От 25 500р

От 45 500р

От 49 500р

От 59 900р

Источник: https://energiatrend.ru/zamer-perehodnogo-soprotivlenija

Испытания сборных и соединительных шин — Проведение периодических проверок, измерений и испытаний сборных и соединительных шин

Проверка переходного сопротивления контактных соединений

Подробности Категория: Підстанції

Проведение периодических проверок, измерений и испытаний сборных и соединительных шин, находящихся в эксплуатации

Нормы испытаний сборных и соединительных шин находящихся в эксплуатации.

Профилактические испытания сборных и соединительных шин проводят при капитальном ремонте (К) и в межремонтный период (М). К — проводится в сроки, устанавливаемые системой ППР, но не реже 1 раза в 8 лет. М — в сроки, устанавливаемые системой ППР. При этом испытания штыревых изоляторов 6-10 кВ шинных мостов, изоляторов ШТ-35, штыревых изоляторов ИШД-35 и др. должны производиться не реже 1 раза в 4 года.

Объем профилактических испытаний, предусмотренный ПЭЭП, включает следующие работы. 1. Проверка состояния подвесных и опорных изоляторов. 2. Проверка состояния вводов и проходных изоляторов. 3. Проверка нагрева болтовых соединений сборных и соединительных шин закрытых распределительных устройств. 4. Проверка качества выполнения болтовых контактных соединений. 5. Измерение переходного сопротивления болтовых контактных соединений. б.

Контроль опрессованных соединений.

7. Контроль сварных контактных соединений.

Проверка состояния подвесных и опорных изоляторов.

Проводится при капитальных ремонтах и в межремонтный период в соответствии с требованиями соответствующих инструкций.

Проверка состояния вводов и проходных изоляторов

Проводится при капитальных ремонтах и в межремонтный период в соответствии с требованиями соответствующих инструкций.

Проверка нагрева болтовых соединений сборных и соединительных шин закрытых распределительных устройств.

Проводится при капитальных ремонтах и в межремонтный период при наибольшем токе нагрузки с помощью стационарных или переносных термоиндикаторов. Для проверок температуры контактов сборных и соединительных шин применяются электротермометры.

Электротермометр представляет собой неравновесный мост, в одном из плеч которого включен терморезистор, а в остальные — резисторы постоянной величины. Индикатором электротермометра является чувствительный прибор магнитоэлектрической системы.

Датчик электротермометра – терморезистор и прибор с измерительной схемой укрепляются на изолированной штанге, которая должна удовлетворять требованиям «Правил пользования и испытания защитных средств, применяемых в электроустановках». На рис. 5.1 представлена принципиальная схема электротермометра

Рис. 5.1. Схема элетротермометра

R1=R2=R3 — сопротивления моста; R4 — сопротивлени» равное при 2°С сопротивлению терморезистора; Rт сопротивление терморезистора.

В качестве терморезисторов применяются терморезисторы типа ММТ или обычные медные, намотанные в одной плоскости, в виде шайбы из провода диаметром 0,05-0,1 мм. Оценка качества контактов по температуре нагрева обычно производится путем сравнения температуры нагрева одинаковых по конструкции контактов по фазам по отношению к нагреву целого места шины (проводника), а также сравнения измеренной с допустимой температурой нагрева или перегрева различных типов контактов.

При эксплуатации используют также для контроля контактных соединений термопленочные указатели. Термопленка есть продукт химического соединения солей ртути с солями меди, скрепленный на клеевой основе и нанесенный на писчую бумагу. Термопленка изготавливается красного цвета. Она начинает заметно изменять свой цвет с температуры 45 – 60°С, при 70°С становится темно-вишневой, а при повышении температуры до 100°С — черной.

Термопленка на бумажной основе способна выдерживать порядка ста нагреваний до температуры 100°С, продолжительностью 1 час каждый. При температуре выше 100°С термопленка разлагается, приобретая бледножелтый цвет, который больше не восстанавливается. Термопленка применяется для контроля нагрева контактов сборных и соединительных шин, отдельных узлов электрических машин и аппаратов.

Рекомендуется располагать термопленку в следующих местах: — на выводах генераторов и двигателей в местах подсоединения шин; — на сборных шинах различного напряжения в местах соединения (компенсаторы, болтовые разъемы); — на вилках разъединителей; — на местах присоединения шин к аппаратам высокого; — напряжения; на баках масляных трансформаторов. Оптимальный размер термопленки для применения 40×10 мм. При необходимости, для удобства контроля и надзора, этот размер может быть увеличен.

Лица, производящие наклейку термопленки, должны быть снабжены резиновыми (хирургическими) перчатками, кисточкой, клеем БФ-4 и инструментом для зачистки мест наклейки. Место наклейки пленки тщательно очищается от грязи, ржавчины и протирается бензином. Затем кисточкой наносится слой клея БФ-4. На подготовленное место накладывается пленка, расправляются ее края и сверху покрывается клеем еще раз.

После окончания наклейки термопленки лица, работавшие с ней, должны тщательно вымыть руки с мылом, а термопленку поместить в специально отведенное место, не доступное посторонним лицам.

Проверка качества выполнения болтовых контактных соединений.

Проводится при капитальном ремонте.

Измерение переходного сопротивления болтовых контактных соединений

Проводится при капитальном и текущем ремонтах. Измерение производится у шин на ток 1000 А и более, за контактами которых отсутствует контроль в процессе эксплуатации, с помощью термоиндикаторов, а также у контактных соединений открытых распределительных устройств напряжением 35 кВ и выше. Переходные сопротивления измеряются на постоянном токе или методом сравнения падения напряжения на контактных соединениях и целых шинах.
Сопротивление участка шин в месте контактного соединения должно превышать сопротивление участка шин такой же длины и такого же сечения не более чем в 1,2 раза.

Контроль опрессованных соединений

Проводится при капитальном ремонте. Измерение переходного сопротивления в данном случае не производится.

Контроль сварных контактных соединений.

Проводится при капитальном ремонте.

Источник: https://forca.com.ua/instrukcii/pidstanciyi/ispytaniya-sbornyh-i-soedinitelnyh-shin_2.html

Переходное сопротивление контактов: причины, нормы, методика измерения

Проверка переходного сопротивления контактных соединений

В электротехнике очень часто возникает необходимость коммутации электрических цепей. Каждое электромеханическое коммутирующее устройство имеет, как минимум, одну пару соединительных контактов. Вопреки ожиданиям, нередко можно наблюдать, что контакты нагреваются. Виной тому является переходное сопротивление контактов, от которого невозможно полностью избавиться.

Контактное пятно образуется в результате любого соприкосновения проводников. В точке соединения проводов всегда возникает сопротивление, которое превышает величину удельных сопротивлений материалов проводника. Существует несколько причин такого явления, о которых речь пойдёт в данной статье. А для начала выясним, что подразумевают под термином переходного сопротивления контактов.

Читайте также  Соединение проводов опрессовкой гильзами

Что это такое?

Сопротивление, возникающее в зоне соприкосновения контактных поверхностей, при преодолении током точек касания, носит название  переходного сопротивления контактов. Другими словами – это скачкообразное увеличение активного  сопротивления в результате прохождения тока через контактное пятно. Математически такое явления можно выразить как отношение падения напряжения на контактах к протекающему через них току: ΔU/I

Как видно из формулы данная величина обратно пропорциональна силе контактного нажатия: Rn = ε/F, где ε – коэффициент, зависящий от физических свойств материала и чистоты обработки поверхности. Эту зависимость можно продемонстрировать на графике (рис. 1).

Рис. 1. График зависимости от приложенной силы нажатия

Нагревание контактных поверхностей – одна из причин быстрого их износа. Поэтому наиболее качественным соединением считается такое, для которого сопротивление контактного перехода является самым низким. В идеале оно должно равняться нулю. Но в силу ряда причин достичь такого значения на практике невозможно.

Причины возникновения

Для сплошного проводника справедлива формула: R = ρ * ( l / S ), где ρ – удельное сопротивление, l – длина, S – сечение проводника. Казалось бы, решение очень простое – надо увеличить площадь контактных площадок в конструкции электрического аппарата. К сожалению, такое усовершенствование не решает задачи кардинально. И дело даже не в том, что применять закон Ома к плоскостным контактам следует с учётом площади прикосновения поверхностей. Оказывается, что увеличение контактной площадки не сильно увеличивает площадь контактного пятна.

Если посмотреть под микроскопом на поверхность плоской контактной площадки, то можно заметить неровности (рис. 2). Касание контактов происходит лишь в некоторых точках. Даже тщательная шлифовка мало помогает. Дело в том, что в результате замыкания и размыкания контактов образуется искра (электрическая дуга), которая увеличивает неровности контактных поверхностей.

Рис. 2. Структура плоских контактных площадок

Обратите внимание на то, как увеличивается контактное пятно под действием силы нажатия (рисунок справа). Это объясняет причину зависимости сопротивления контактного перехода от нажатия, (график такой зависимости представлен на рисунке 1).

От чего зависит переходное сопротивление контактов?

Мы выяснили, что от площадей соприкасаемых поверхностей мало что зависит.  На нагрев участка механического соединения влияют и другие явления. Например, окисление меди приводит к повышению температуры нагрева на скрутках соединительных проводов. Аналогичный процесс происходит также при соединении алюминиевых проводников.

В результате окисления проводников на их поверхностях образуется тонкая оксидная плёнка. С одной стороны, наличия пленок препятствует проникновению кислорода вглубь металла, предотвращая дальнейшее его разрушение, но с другой стороны они являются ещё одной причиной роста переходных сопротивлений.

Когда медь окисляется, то на поверхности контактной площадки образуется устойчивая плёнка. А это всегда приводит к увеличению сопротивляемости перехода. Устранить дефект можно путём протирания контактов спиртом. Регулярная процедура чистки помогает содержать коммутационные устройства в актуальном состоянии.

Алюминиевый контакт лучше поддаётся влиянию контактного нажатия, благодаря пластичности этого металла. С целью увеличения силы нажатия применяются болты, пружинные зажимы и различные клеммники.

Медные соединительные провода часто припаивают. В местах спайки переходное сопротивление минимальное.

Подводя итог, можем констатировать:

  1. Простое соприкосновение контактных поверхностей не обеспечивает надёжного контакта, поскольку соединение происходит не по всей поверхности, а лишь в немногих точках.
  2. на преодоление контактного перехода почти не влияют размеры и формы контактных площадок (см. график на рис. 3).
  3. Контактное нажатие существенно влияет на структуру перехода. Однако, это влияние проявляется только при сравнительно незначительных усилиях. После некоторого значения приложенной силы, вызвавшей смятие, сопротивляемость току стабилизируется.
  4. Со временем на медных и алюминиевых контактах образуется защитная плёнка, увеличивающая сопротивление. Для борьбы с этим явлением используют сплавы, покрывают поверхности серебром. Окисление активизируется при повышении температуры (для меди свыше 70 ºC). Температура в свою очередь зависит от токов нагрузки.
  5. Очень интенсивно на открытом воздухе окисляется алюминий. Оксидная плёнка алюминия обладает довольно большим удельным сопротивлением.

Рис. 3. Переходное сопротивление стали

Чтобы добиться нужного результата, следует учитывать комплексное влияние  всех вышеперечисленных факторов. Правилами устройств электроустановок строго регламентируется сопротивление контактной группы. Нарушение этих требований может привести к авариям.

Нормы по ПУЭ 7

Правилами предусмотрено соблюдение важных параметров, включая допустимые значения для контактных переходов. Измерения сопротивления постоянному току проводятся при испытаниях разъединителей и отделителей. Нормы по ПУЭ 7 требуют, чтобы показания величин для отделителей и разъединителей, предназначенных для работы под напряжением от 110 кВ, соответствовали данным заводов-изготовителей.

По правилам ПУЭ 7 для разъединителей типа РОН3, рассчитанных на номинальное напряжение 400 – 500 кВ (при номинальном токе 2000 А) переходное сопротивление не должно превышать 200 мкОм. Для ЛРН (110 – 220 кВ/ 600 А сопротивление контактов должно составлять 220 мкОм.

Требования для остальных типов отделителей, применяемые в сетях 110 – 500 кВ:

  • Номинальному току 600 А соответствует сопротивление 175 мкОм;
  • 1000 А – 120 мкОм;
  • 1500 – 2000 А – наибольшее допустимое сопротивление 50 мкОм.

Измерения выполняются между точкой «контактный ввод» и на клемме «контактный вывод».

Методика измерения

Можно использовать формулу ΔU/I и провести вычисления с помощью амперметра и вольтметра. Этим методом измеряют переходное параметры контактов мощных силовых выключателей. Для этого амперметр включают последовательно с контактами, а вольтметр параллельно. Перед амперметром добавляют балластный резистор, параметры которого подбирают так, чтобы рабочий ток контактов соответствовал току контактного сопротивления (с учётом требований ПУЭ).

Данная процедура довольно громоздкая. Целесообразно воспользоваться милиомметром.

При выборе омметра следует учитывать следующие обстоятельства:

  1. Границы измерений должны находиться в диапазоне контроля прибора.
  2. Нижний предел диапазона омметра должен начинаться от 10 мкОм.
  3. Погрешность измерений не должна превышать 0,5%.

Существуют специальные приборы, предназначенные для измерений переходного сопротивления контактов. Выше приведённые требования уже учтены в таких приборах. Один из измерителей показан на рисунке 4. Результат измерений отображается непосредственно на цифровом дисплее.

Рис. 4. Измерительный прибор METREL

При измерениях следует учитывать загрязнение контактов и рабочую температуру агрегата. Наличие сторонних включений на площадках контактов, равно как и заниженная температура может исказить показания измерителя в большую сторону. Чтобы получить наиболее реальные параметры, необходимо выбирать токи и напряжения, близкие по значению к номинальным, характерным для конкретного разъединителя. Следует также помнить о том, что контакты обладают первоначальным временным сопротивлением, которое снижается после прогрева.

Существуют профессиональные измерительные приборы, у которые можно регулировать выходную мощность в довольно больших пределах. Они обеспечивают более высокую точность измерения.

Источник: https://www.asutpp.ru/perehodnoe-soprotivlenie-kontaktov.html