Прибор для автоматической тренировки аккумуляторов

Содержание

Прибор для автоматической тренировки аккумуляторов

Прибор для автоматической тренировки аккумуляторов

Главной причиной уменьшения емкости аккумулятора и снижения напряжения на выходах батареи является сульфатация пластин. Сульфатация пластин – это химический процесс оседания на поверхности пластины слоя сульфата свинца. Образующийся сульфат свинца является плохим проводником электрического тока, что  приводит к снижению эффективности заряда и постепенному уменьшению ёмкости аккумуляторной батареи.

К основным причинам сульфатации пластин аккумулятора следует отнести:

  • длительные простои автомобиля, неиспользование аккумулятора длительное время;
  • хранение аккумуляторной батареи  в разряженном виде;
  • короткое время заряда батареи и большая нагрузка на аккумулятор;
  • недостаточный ток заряда аккумулятора;
  • отсутствие периодической подзарядки;
  • использование аккумулятора в условиях низких температур;
  • глубокие разряды АКБ.

Основным способом снижения сульфатации пластин является воздействие на них электрическим током в различных режимах. Такой процесс называют процессом тренировки или восстановления аккумуляторной батареи.

Существуют несколько основных проверенных методик тренировки и восстановления аккумуляторных батарей:

  • восстановление АКБ методом длительного заряда малыми токами
  • восстановление АКБ методом глубоких разрядов малыми токами
  • восстановление АКБ методом заряда циклическими токами
  • восстановление АКБ методом постоянного напряжения
  • восстановление АКБ импульсными токами

Тренировка и восстановление аккумуляторов методом длительного заряда малыми токами

Метод длительных зарядов токами малой амплитуды позволяет получать хорошие результаты при небольшой и незастарелой сульфатации аккумуляторных пластин. Аккумулятор необходимо подключить на заряд током нормальной величины (10 % от общей емкости аккумулятора).

Заряд необходимо производить до момента начала образования газов. Далее необходимо сделать перерыв на 20-30  минут. На втором этапе проводится  заряд аккумуляторной батареи с уменьшением значения тока до 1 % от емкости АКБ. После этого делается еще один перерыв на 20-30 мин.

Такие циклы заряда необходимо повторять несколько раз.

Тренировка и восстановление аккумуляторов методом глубоких разрядов малыми токами

Метод глубоких разрядов малыми токами эффективен для тренировки и   восстановления аккумулятора с наличием признаков застарелой сульфатации.  Метод тренировки состоит в заряде АКБ с перезарядом токами стандартной величины  и длительным глубоким разрядом с малыми токами. Выполнение   нескольких циклов разряда малыми токами и обычного заряда аккумуляторной батареи дает возможность эффективного восстановления батареи.

Тренировка и восстановление аккумуляторов методом заряда циклическими токами

Еще один эффективный метод восстановления аккумуляторов и увеличения срока службы аккумуляторов — метод заряда циклическими токами. Суть метода проста. Проводится  измерение  сопротивления аккумуляторной батареи. В случае превышения фактического сопротивления над стандартным заводским значением АКБ подвергают заряду малым током, после этого делают перерыв 5—10 минут и начинают разряд аккумулятора. После этого  делают перерыв и повторяют циклы «заряд — перерыв — разряд — перерыв»  несколько раз.

Тренировка и восстановление аккумуляторов методом постоянного напряжения

Суть метода состоит в заряде АКБ током постоянного напряжения, при этом сила тока меняется (обычно уменьшается). При этом на первом этапе процесса заряда сила тока может составлять 150 % от ёмкости АКБ и с течением времени постепенно снижаться до малых значений.

Нужно брать в расчет внутреннее сопротивление и емкость АКБ. В зависимости от соотношения этих показателей, сила тока, которая проходит через него в начале зарядки, может превысить 50A.

Чтобы  батарея не сгорела, на всех зарядных устройствах присутствует ограничитель в 20-25A

Тренировка и восстановление аккумуляторов импульсными токами

Суть метода состоит в подаче для заряда АКБ тока импульсной формы. Амплитуда значения тока в импульсах выше обычных значений в 5 раз. Максимальные значения амплитуды кратковременно могут достигать 50 Ампер. Длительность импульса при этом мала — несколько микросекунд. При таком режиме заряда происходит расплавление кристаллов сульфата свинца и восстановление батареи

Правила проведения работ по тренировке и восстановлению аккумуляторных батарей

При выполнении всех работ необходимо соблюдать следующие правила:

  • Перед началом работ необходимо полностью очистить аккумуляторную батарею.
  • Перед началом заряда батареи  необходимо проверить состояние и уровень электролита.
  • Выполнение работ по зарядке аккумуляторов должно проводиться в специальном, хорошо вентилируемом помещении.
  • Запрещается держать открытый огонь возле батареи.

Эффективный прибор для восстановления и тренировки аккумуляторов

SKAT-UTTV — это высокоэффективное устройство  для проведения автоматического тестирования, тренировки, восстановления, заряда и определения остаточной емкости свинцово-кислотных аккумуляторов  различных видов и  типов.  Прибор позволяет проводить восстановление аккумуляторных батарей открытого и закрытого типа.

SKAT-UTTV имеет микропроцессорное управление, что позволяет быстро определить прогнозируемый срок службы аккумуляторной батареи.  Прибор имеет различные режимы работы, для управления режимами используется цифровой дисплей и кнопки управления.

Методы восстановления и тренировки аккумуляторов устройства SKAT-UTTV

Прибор использует следующие методы заряда, тренировки и восстановления аккумуляторов:

  • заряд постоянным током значения 10 % от емкости АКБ до достижения порога по напряжению;
  • заряд постоянным током значения 5 % от емкости АКБ до достижения порога по напряжению;
  • заряд постоянным напряжением с автоматическим выбором значения тока, заряд постоянным током значения 20 % от емкости АКБ до достижения порога по напряжению,заряд постоянным напряжением до достижения порога по значению емкости батареи;
  • заряд асимметричным током с чередованием импульсов оптимального заряда, подбираемых автоматически до достижения порога по значению напряжения батареи, разряд постоянным током малого значения от 5 % от емкости АКБ до достижения минимального порога по напряжению.

В процессе выполнения заряда, тренировки и восстановления аккумулятора прибор выбирает автоматически программы использования всех методов на различных циклах.

Источник: https://volt-amper.ru/articles/treniroa-vosstanovlenie-akkumulyatora

Устройства для подзарядки аккумуляторов: компенсация разрядки

О существовании подобных устройств многие даже не догадываются. Про зарядные устройства знают все, а вот какие-то подзарядные — что это? И в каких случаях они могут потребоваться?

К терминологии мы еще вернемся, а нужны эти «подзарядки» вот зачем. Представьте, что автомобиль неделями стоит в гараже без движения. Когда же он вдруг срочно понадобился, выясняется, что батарея подсела настолько, что крутить стартер не может. А если это случается постоянно?

В подобную ситуацию часто попадают автомобили, которые стоят на выставочных стендах. У них играет аудиосистема, горит свет, но мотор не работает. Вот и тянутся под капот тоненькие проводки, подпитывающие штатную батарею машины от внешнего источника.

Большие токи не нужны: достаточно компенсировать потребление штатных микроконтроллеров, а также охранной системы и телематики. У современных гаджетов аппетит скромный — десятки миллиамперов, при том что их аналоги прошлых лет выпуска потребляли порой на порядок больше.

Казалось бы, подключи зарядное устройство — и нет проблем! Но далеко не всякая «зарядка» рассчитана на постоянную работу в течение недель, а то и месяцев. Другое дело, если производитель указывает на подобную возможность использования своего продукта. Вот такие устройства мы и решили погонять в реальных условиях — в течение нескольких месяцев.

Из восьми приобретенных изделий только два являются чистой воды «подзарядками» — Торнадо и Moratti. Остальные — «зарядки», обещающие не только оживить севшие аккумуляторы, но и поддерживать их заряд на должном уровне. Именно эту функцию мы и оценивали в ходе испытаний.

Что и где испытывали

Испытания проводили в лаборатории ФГКУ 3 ЦНИИ МО РФ в течение трех месяцев. Длительную проверку способности устройств компенсировать падение заряда вели на батареях энергоемкостью 55, 75 и 90 А·ч при температурах —20; 0; +25 ºС.

Склонность к перегреву оценивали при работе с батареями от 75 до 190 А·ч, задавая максимально возможную нагрузку для каждого устройства. Для каждого изделия проверили «дуракоустойчивость» — использовали переполюсовку и т. п.

 При расстановке по местам учитывали заявленные параметры, качество изготовления, грамотность инструкции и удобство пользования.

Устройство Торнадо в «чужом» корпусе решили вскрыть. Собрано неплохо, но это уровень прошлого тысячелетия. Даты на радиоэлементах выдают себя сами.Устройство Торнадо в «чужом» корпусе решили вскрыть. Собрано неплохо, но это уровень прошлого тысячелетия. Даты на радиоэлементах выдают себя сами.Устройство Торнадо в «чужом» корпусе решили вскрыть. Собрано неплохо, но это уровень прошлого тысячелетия. Даты на радиоэлементах выдают себя сами.

Читайте также  Виды нагревательных элементов в электронагревательных приборах

ХРАНЕНИЕ? ПОДЗАРЯДКА? КОМПЕНСАЦИЯ?

Многомесячный марафон закончился удачно: ни одно из устройств не попросило пощады, ни одна батарея не пожаловалась на плохое обслуживание. «Защита от дурака» тоже на высоте: переполюсовок и прочих провокаций изделия не боятся. В то же время понравились далеко не все — на эту тему мы подробно высказались в подписях фотогалереи. Отметим также, что все устройства обеспечивают подзарядку в 20‑градусный мороз — даже те, которые, судя по инструкции, совсем не морозоустойчивые.

Источник: https://1000eletric.com/pribor-dlya-avtomaticheskoy-trenirovki-akkumulyatorov/

Разрядно-зарядное устройство для аккумуляторных батарей

Прибор для автоматической тренировки аккумуляторов

Правильная эксплуатация аккумуляторов и аккумуляторных батарей различных типов во многом обеспечивает их долговечность и надежность. Для частичного или полного восстановления емкости, а также устранения «эффекта памяти» рекомендуется тренировка аккумуляторов проведением нескольких циклов разрядки-зарядки. Предлагаемое устройство автоматизирует этот процесс. Оно разработано для обслуживания Ni-Cd, Ni-Mh, но может быть использовано для аккумуляторов и других типов.

Предлагаемое устройство после подключения аккумуляторной батареи сначала ее разряжает, затем заряжает, после чего переходит в режим ожидания. Напряжения разрядки и зарядки предварительно устанавливают в интервале 1…12В, а токи разрядки и зарядки — в интервале 0…0,25 А.

Схема устройства показана на рис. 1. Оно содержит блок питания, стабилизаторы тока разрядки и зарядки, а также узел управления и индикации. Блок питания собран на понижающем трансформаторе Т1, выпрямителе на диодном мосте VD1 со сглаживающим конденсатором С1 и интегральном стабилизаторе напряжения DA2. Выходное напряжение стабилизатора, кроме питания микросхем и других элементов, используется как образцовое для контроля за напряжением аккумуляторной батареи. Выходной ток стабилизатора не превышает 15 мА и практически не влияет на изменение его выходного напряжения.

Узел управления и индикации содержит два ОУ DA1.1, DA1.2, которые использованы как компараторы, два триггера DD1.1 и DD1.2, электронные ключи на транзисторах VT1, VT2, VT4, VT5 и стабилизатор тока на транзисторе VT3. ОУ DA1.2 контролирует напряжение на аккумуляторной батарее при ее разрядке.

Переменным резистором R1 устанавливают напряжение, до которого она должна быть разряжена. Пока напряжение на ней превышает установленное, на выходе ОУ DA1.2 оно соответствует низкому логическому уровню. ОУ DA1.1 контролирует напряжение аккумуляторной батареи при ее зарядке. Переменным резистором R3 устанавливают напряжение, до которого она должна быть заряжена.

Пока напряжение на ней меньше установленного, на выходе ОУ DA1.1 присутствует низкий уровень.

Стабилизатор тока разрядки представляет собой источник тока, управляемый напряжением (ИТУН). Он собран на ОУ DA3.1, транзисторе VT6 и резисторе R23 — датчике тока. Конденсаторы С7 и С9 обеспечивают устойчивую работу ИТУН. Ток разрядки устанавливают переменным резистором R17. Его значение можно определить по формуле Iразр = UR17/R23, где UR17 — напряжение на движке резистора R17.

Стабилизатор тока зарядки собран на транзисторе VT7, источник образцового напряжения — на стабилитроне VD2, ток через который стабилизирован транзистором VT3, а резистор R26 выполняет функцию датчика тока. Переменным резистором R25 устанавливают ток зарядки. Диод VD3 предотвращает разрядку аккумуляторной батареи через транзистор VT7 при отключении устройства от сети. В этой же ситуации резисторы R7 и R8 ограничивают входные токи ОУ DA1.1 и DA1.2 [3].

Работает устройство следующим образом. После подключения аккумуляторной батареи переменными резисторами R1 и R3 устанавливают значения напряжения, до которых необходимо разрядить и зарядить батарею, и включают устройство в сеть. При кратковременном нажатии на кнопку SB1 «Пуск» триггеры DD1.1 и DD1.

2 установятся в нулевое состояние — низкий уровень на прямых выходах (выводы 1 и 13 DD1) и высокий на инверсных (выводы 2 и 12). Напряжение питания поступит на резистор R15, и на движке резистора R17 появится управляющее напряжение стабилизатора тока разрядки, поэтому он начнет работать.

Этот режим индицирует светящийся светодиод HL2 «Разрядка», поскольку на него поступит питающее напряжение через открытый транзистор VT2.

По мере разрядки напряжение на аккумуляторной батарее начнет уменьшаться, и когда оно станет меньше напряжения на движке резистора R1, компаратор DA1.2 переключится. На его выходе появится высокий уровень, который установит триггер DD1.2 в единичное состояние. На инверсном выходе установится низкий уровень, поэтому ток разрядки станет близким к нулю, светодиод HL2 погаснет, а транзистор VT5 откроется. Поскольку транзистор VT4 при этом открыт за счет высокого уровня на инверсном выходе триггера DD1.1, через стабилитрон VD2 потечет ток и начнет работать стабилизатор тока зарядки. Этот режим индуцируется горящим светодиодом HL3 «Зарядка».

По мере зарядки напряжение на аккумуляторной батарее увеличивается, и при достижении напряжения отключения, которое установлено резистором R3, ОУ DA2.1 переключится, сменив на высокий низкий уровень на выходе. Триггер DD1.1 установится в единичное состояние, что приведет к открыванию транзистора VT1 и закрыванию транзистора VT4. Зарядка остановится, светодиод HL3 погаснет, и загорится светодиод HL1 «Конец зарядки».

Большинство деталей устанавливают на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2. Конденсаторы С5, С6 и С8 монтируют со стороны печатных проводников на выводах микросхем DD1, DA1 и DA3.

Транзисторы VT6, VT7 после установки на плату крепят к пластине размерами 99x25x10 мм и толщиной 1,5 мм из алюминиевого сплава, которая служит теплоотводом. Причем транзистор VT6 крепят через теплопроводящую изолирующую прокладку. Плату устанавливают на дно пластмассового корпуса подходящего размера, там же закрепляют и понижающий трансформатор Т1.

На крышке корпуса устанавливают переменные резисторы, светодиоды и кнопку, а на боковой стенке — держатель плавкой вставки.

Применены постоянные резисторы МЛТ, С2-23, переменные — СПЗ-4аМ группы А, но возможна замена на переменные резисторы другого типа с линейной зависимостью сопротивления от угла поворота движка. Оксидные конденсаторы — К50-35 или импортные, остальные — К10-17. Транзисторы КТ3102А заменимы на транзисторы КТ3102, КТ342, КТ315 с любыми буквенными индексами, КТ3107 — на транзисторы КТ3107, КТ361 также с любым буквенным индексом.

Транзистор КП303В можно заменить на КП303Г, КП303Д, транзистор КТ973А — на КТ973Б. ОУ LM358N заменим его аналогами КР1040УД1, КР1464УД1R аналог микросхемы LM7812CV— КР142ЕН8Б. Кнопка SB1 — любая с самовозвратом, например, П2К без фиксации. Понижающий трансформатор — ТС-10-ЗМ либо другой, обеспечивающий на вторичной обмотке переменное напряжение 15…18 В при выходном токе до 0,3 А.

Диодный мост RB152 заменим любым с допустимым обратным напряжением не менее 50 В и прямым током не менее 0,5 А или отдельными диодами с такими же параметрами.

Если монтаж выполнен правильно и элементы исправны, налаживание сводится к градуировке шкал резисторов R1 и R3, R17 и R25 и регулировке стабилизаторов тока разрядки и зарядки. Сначала градуируют шкалы резисторов R1 и R3 — для этого включают питание, а к их движкам поочередно подключают вольтметр.

Изменяя положение движков резисторов, устанавливают требуемое напряжение и делают соответствующие отметки на шкале. Шкалу резистора R1 градуируют через 1 В (из расчета 1 В на один аккумулятор), а шкалу резистора R3 — через 1,45 В.

Например, шкала резистора R1 — 1, 2, 3, 4, 5, 6, 7 и 8 В, а шкала резистора R3 — 1,45; 2,9; 4,35; 5,8; 7,25; 8,7; 10,15 и 11,6 В.

Для градуировки шкалы резисторов R17 и R25 их движки устанавливают в нижнее (R17) и правое (R25) по схеме положение, а последовательно с заряженной батареей аккумуляторов включают амперметр и подключают их к устройству. Движки резисторов R1 и R3 устанавливают в верхнее по схеме положение, включают устройство в сеть и кратковременно нажимают на кнопку SB1 «Пуск». Устройство начнет работать в режиме разрядки. Движок резистора R17 устанавливают в верхнее по схеме положение и контролируют максимальный ток разрядки.

При необходимости его изменяют подборкой резистора R15. Затем градуируют шкалу резистора R17, делая на ней отметки в соответствии с показаниями амперметра. Для градуировки шкалы резистора R25 его движок устанавливают в крайнее левое по схеме положение и кратковременно подают напряжение питания (12 В) на вход S (вывод 8) триггера DD1.2 — устройство перейдет в режим зарядки. При необходимости максимальное значение тока зарядки устанавливают подборкой резистора R22.

Далее градуируют шкалу резистора R25, делая на ней отметки, соответствующие показаниям амперметра.

Радио №10, 2010г.

Список радиоэлементов

Обозначение Тип Номинал Количество ПримечаниеМагазинМой блокнотDA1

DA2

DA3

DD1

VT1, VT4, VT5

VT2

VT3

VT6

VT7

VD1

VD2

VD3

С1

С2

С3-С9

R1, R3

R2, R4

R5-R8, R12, R15, R21

R9-R11

R13, R14, R18, R20

R16, R19

R17

R22

R23

R24

R25

R26

T1

FU1

SB1

HL1

HL2

HL3

XP1

Операционный усилитель LM124-N 1 Поиск в Utsource В блокнот
Линейный регулятор LM7812 1 КР142ЕН8Б Поиск в Utsource В блокнот
Операционный усилитель LM358N 1 КР1040УД1, КР1464УД1R Поиск в Utsource В блокнот
МС К561ТМ2 1 Поиск в Utsource В блокнот
Биполярный транзистор КТ3102А 3 КТ3102, КТ342, КТ315 Поиск в Utsource В блокнот
Биполярный транзистор КТ3107А 1 КТ361 Поиск в Utsource В блокнот
Полевой транзистор КП303В 1 КП303Г, КП3О3Д Поиск в Utsource В блокнот
MOSFET-транзистор IRLR2905 1 Поиск в Utsource В блокнот
Биполярный транзистор КТ973А 1 КТ973Б Поиск в Utsource В блокнот
Диодный мост RB152 1 Поиск в Utsource В блокнот
Стабилитрон КС156А 1 Поиск в Utsource В блокнот
Диод КД209А 1 Поиск в Utsource В блокнот
Электролитический конденсатор 2200 мкФ 35 В 1 Поиск в Utsource В блокнот
Электролитический конденсатор 1000 мкФ 16 В 1 Поиск в Utsource В блокнот
Конденсатор 0.1 мкФ 7 Поиск в Utsource В блокнот
Переменный резистор 10 кОм 2 Поиск в Utsource В блокнот
Резистор 560 Ом 2 Поиск в Utsource В блокнот
Резистор 10 кОм 7 Поиск в Utsource В блокнот
Резистор 100 кОм 3 Поиск в Utsource В блокнот
Резистор 20 кОм 4 Поиск в Utsource В блокнот
Резистор 1.5 кОм 2 Поиск в Utsource В блокнот
Переменный резистор 470 Ом 1 Поиск в Utsource В блокнот
Резистор 3 кОм 1 Поиск в Utsource В блокнот
Резистор 2 Ом 1 Поиск в Utsource В блокнот
Резистор 5.1 кОм 1 Поиск в Utsource В блокнот
Переменный резистор 3.3 кОм 1 Поиск в Utsource В блокнот
Резистор 6.2 Ом 1 0.5 Вт Поиск в Utsource В блокнот
Трансформатор ТС-10-ЗМ 1 Поиск в Utsource В блокнот
Предохранитель 0.25 А 1 Поиск в Utsource В блокнот
Кнопка 1 Поиск в Utsource В блокнот
Светодиод АЛ307БМ 1 Поиск в Utsource В блокнот
Светодиод АЛ307ДМ 1 Поиск в Utsource В блокнот
Светодиод АЛ307ГМ 1 Поиск в Utsource В блокнот
Вилка сетевая 1 Поиск в Utsource В блокнот
Добавить все
Читайте также  Прибор для измерения электрического заряда

Скачать список элементов (PDF)

Источник: https://cxem.net/pitanie/5-186.php

Восстановление и тренировка аккумуляторов

Прибор для автоматической тренировки аккумуляторов

Этот метод успешно используется при небольшой и не застарелой сульфатации аккумуляторных пластин. АКБ подключают на зарядку током нормальной величины (10 % от общей ёмкости АКБ). Зарядка производится до момента начала образования газов. После чего делается перерыв на 20 минут. На втором этапе проводят заряд АКБ, уменьшая значение тока до 1 % от ёмкости. Затем делают перерыв на 20 мин. Циклы заряда повторяет несколько раз

Восстановление аккумуляторов методом глубоких разрядов малыми токами

Для восстановления аккумулятора с признаками застарелой сульфатации используется метод заряда АКБ с перезарядом токами обычной величины и последующим длительным глубоким разрядом с малыми значениями тока. Путём осуществления нескольких циклов сильного разряда токами малых величин и обычного заряда аккумулятор может быть успешно восстановлен.

Восстановление аккумуляторов методом заряда циклическими токами

Проводится АКБ, измеряется внутреннее сопротивление батареи. В случае превышения фактического сопротивления над установленным заводским значением батарею подвергают заряду малым током, после этого делают перерыв 5 минут и начинают разряд аккумулятора. Вновь делают перерыв и повторяют циклы «заряд — перерыв — разряд — перерыв» многократно.

Восстановление аккумуляторов импульсными токами

Суть метода состоит в подаче для заряда АКБ тока импульсной формы. Амплитуда значения тока в импульсах выше обычных значений в 5 раз. Максимальные значения амплитуды кратковременно могут достигать 50 Ампер. Длительность импульса при этом мала — несколько микросекунд. При таком режиме заряда происходит расплавление кристаллов сульфата свинца и восстановление батареи

Восстановление аккумуляторов методом постоянного напряжения

Суть метода состоит в заряде АКБ током постоянного напряжения, при этом сила тока меняется (обычно уменьшается). При этом на первом этапе процесса заряда сила тока составлять 150 % от ёмкости АКБ и с течением времени постепенно снижаться до малых значений

SKAT-UTTV — профессиональный прибор для восстановления и тренировки аккумуляторов

SKAT-UTTV — это современный автоматический прибор для проведения тестирования, тренировки, восстановления, заряда и реанимации свинцово-кислотных аккумуляторных батарей различного типа (герметичных и открытого типа). Прибор даёт возможность определить, как долго может прослужить в дальнейшем АКБ, провести его заряд, восстановление аккумулятор с пониженной ёмкостью. Прибор имеет удобный пользовательский интерфейс, все режимы работы и параметры заряда и разряда выводятся на цифровой дисплей

Возможности прибора по восстановлению и тренировке аккумуляторов

  • Прибор осуществляет определение остаточной ёмкости батареи способом контрольного разряда, обычный заряд батареи, ускоренный заряд батареи, восстановление аккумуляторов, имеющих сульфатирование пластин, тренировку батарей с помощью чередования циклов заряда и разряда, принудительный заряд сильно разряженной батареи.
  • Прибор имеет эффективную защиту от короткого замыкания в цепи, электронную защиту от ошибочного подключения к клеммам батареи, надёжную защиту от процесса перегревания элементов прибора, понятную световую индикацию режимов работы устройства, вывод параметров батареи и режимов работы прибора.

Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач

Прибор для автоматической тренировки аккумуляторов

Описываемый прибор предназначен для обслуживания кислотных аккумуляторных батарей с номинальным напряжением 12 В и ёмкостью от 40 до 100 Ач. Прибор питается от сети переменного тока напряжением 220 В и потребляет не более 25 Вт при отсутствии зарядки и не более 180 Вт при максимальном зарядном токе.

В предлагаемом приборе использован псевдокомбинированный способ, при котором производится разрядка до напряжения на каждом аккумуляторе 1,7-1,8В, а затем последующая зарядка циклами. Критерием, используемым при управлении процессом зарядки, является напряжение на аккумуляторной батарее, функционально связанное со степенью её заряженности. Зарядка в каждом цикле заканчивается при достижении на клеммах батареи напряжения 14,8 — 15 В, а возобновляется при снижении его до 12,8-13 В.

Для автоматической тренировки аккумулятора, прибор проводит разрядку батареи до напряжения 10,5 — 10,8 В, автоматически переключается на режим зарядки и осуществляет ее циклами, как указано выше.

Прибор может работать в одном из трех режимов:

  • в первом режиме «Щ» возможны два варианта: либо зарядка циклами, либо разрядка до напряжения 10,5 — 10,8В, а затем зарядка циклами;
  • во втором режиме «NЦ» происходит многократный переход от зарядки к разрядке при достижении на клеммах аккумуляторной батареи напряжения 14,8 — 15В и от разрядки к зарядке при напряжении на клеммах 10,5 — 10,8В;
  • ручной режим «РЗ» соответствует работе обычного зарядного устройства без автоматики.

Разряжается батарея током 2 — 1,7А, а заряжается током 2 или 5А (в первом случае он изменяется от 2 до 1,5А, во втором — от 5,8 до 4,5А).

Работа узлов прибора

Понижающий трансформатор Т1 обеспечивает на вторичной обмотке переменное напряжение около 19 В. С помощью диодов VD1 — VD4 получается пульсирующее напряжение амплитудой около 27 В, а после диода VD6 на конденсаторе С1 образуется постоянное напряжение около 26 В, необходимое для питания узла автоматики. Пульсирующее напряжение подается на анод тиристора VS1. Если на управляющий электрод тиристора подать соответствующее напряжение, тиристор откроется и пропустит ток для зарядки аккумуляторной батареи через лампы HL2 — HL6 и выключатель SA3.

Ток зарядки ограничивается лампами накаливания HL2 (в режиме «2А») или HL2 — HL4 (в режиме «5А»). Разряжается батарея через транзистор VT13 и резисторы R25, R26.

Управляются тиристор и транзистор VT13 узлом автоматики. Он содержит источник образцового напряжения (резистор R17, стабилитроны VD10, VD11), пороговый выключатель разрядки (транзисторы VT6, VT7, резисторы R19 — R21), усилитель сигнала разрядного тока (транзисторы VT9, VT11, VT12), пороговый переключатель зарядки (транзисторы VT2 + VT5 с соответствующими резисторами, включая R12, R16), усилитель сигнала зарядного тока (транзисторы VT1, VT8) и элементы запрета сигнала зарядки (диод VD12, транзистор VT10).

Пороговый переключатель разрядки подключен к выходным зажимам прибора X1 и Х2, предназначенным для подключения аккумуляторной батареи. Имеющееся на них напряжение является одновременно и питающим и контролируемым напряжением выключателя.

Радиолюбителям известен аналог тиристора, состоящий из двух транзисторов разной структуры. Аналог способен по внешнему сигналу переходить в открытое состояние и сохранять его, пока хотя бы один из транзисторов находится в насыщении. Выключение наступает при снижений тока до порогового значения, когда оба транзистора выходят из насыщения.

Читайте также  Виды и функции климатических приборов

Пороговый выключатель выполнен с аналогичными связями, но не непосредственными, а через резисторы, причем эмиттер одного из транзисторов подключен к образцовому напряжению, а база — к делителю напряжения. Благодаря этому пороговый выключатель обладает температурной стабильностью напряжения порога выключения. Настраивают выключатель на пороговое напряжение 10,5-10,8В подстроечным резистором R19.

Усилитель сигнала разрядного тока состоит из цепочки транзисторов с чередующейся структурой. Транзисторы работают в ключевом режиме. Работа одного из них (VT11) поставлена в зависимость от наличия напряжения 26 В. Это сделано для прекращения разрядки, батареи в случае аварийного выключения сетевого напряжения.

Пороговый переключатель зарядки состоит из транзисторного усилителя (VT5), триггера Шмитта (VT2, VTЗ) и ключевого транзистора (VT4). Последний предназначен для устранения влияния нижнего порога переключения (резистор R12) на верхний (резистор R16).

Усилитель зарядного тока, как и разрядного, состоит из цепочки транзисторов разной структуры, работающих в ключевом режиме. При этом коллекторный ток транзистора VT1 может протекать через базовую цепь транзистора VT8, когда закрыт транзистор VT10 (т. е. нет разрядки).

Диод VD12 повышает надежность закрывания транзистора VT8 при открывании транзистора VT10 (когда идет разрядка батареи и ток через управляющий электрод тиристора не должен протекать). Диод VD7 защищает управляющий электрод тиристора от обратного тока, который мог бы быть при выключении сети и подключенной аккумуляторной батарее.

Цепочка С2, R15, VD9 нужна для случая зарядки глубоко разряженной или сульфатированной батареи, когда на ее клеммах может возникнуть пульсирующее напряжение. Благодаря диоду VD9 на конденсаторе С2 оказывается сглаженное напряжение, Без этой цепочки выбросы напряжения могли бы раньше времени вывести пороговый выключатель из режима зарядки.

Рис. 1. Принципиальная схема прибора для автоматической тренировки аккумуляторов.

Конденсатор С3 играет роль своеобразного аккумулятора и используется для контроля исправности прибора. В положении «КОНТРОЛЬ» выключателя SA3 он может заряжаться только через диод VD12 и резистор R34, а разряжаться через узел автоматики. Поскольку в режимах «1Ц» и «NЦ» процессы зарядки и разрядки происходят с периодом повторения около 1 секунды, то на вольтметре РV1 будут наблюдаются колебания стрелки, отражающие напряжения порогов переключения и управляемость всех цепей зарядки и порогового выключателя.

Клеммы Х3 и Х4 с напряжением 12,6 В предназначены для подключения вулканизатора, лампы подсветки, малогабаритного паяльника и другой нагрузки мощностью до 100 Вт.

Рассмотрим более подробно работу прибора в различных режимах при установке выключателя SA3 в положение «КОНТРОЛЬ» (аккумуляторная батарея не подключена).

В режиме «1Ц» после подачи на блок сетевого напряжения на конденсаторе С3 напряжение не повышается, потому что отсутствует ток базы транзистора VT1. Чтобы обеспечить начальные условия работы, переключателем SA4 кратковременно устанавливают режим «Р3» и возвращают в положение «1Ц». После этого пороговый переключатель начинает работать, запрещая зарядку при повышении напряжения на конденсаторе выше установленного максимума (14,8-15В) и разрешая, если оно стало ниже установленного минимума(12,8-13В).

При переводе переключателя SA4 в режим «NЦ» на коллектор транзистора VT7 подается через диод VD8 напряжение, и пороговый выключатель срабатывает, разрешая разрядку. При этом открытый транзистор VT10 запрещает зарядку, и конденсатор С3 разряжается через узел автоматики до напряжения 10,5 4- 10,8 В.

После опрокидывания порогового выключателя транзистор VT10 закрывается, коллекторный ток транзистора VT1 протекает через диод VD12 и базовую цепь транзистора VT8. Этот транзистор, а вслед за ним и тиристор открываются. Через конденсатор С3 протекает зарядный ток, и напряжение на конденсаторе повышается до 14.8-15В.

Во время указанного контроля остаются непроверенными элементы разрядки, поскольку такие дефекты, как обрыв в цепях транзисторов VT11 — VT13, никак не отразятся на показаниях вольтметра PV1. Для контроля работы этих элементов выключатель SA3 устанавливают в положение «ЗАРЯД» — тогда в режиме «NЦ» конденсатор С3 будет разряжаться в основном через транзистор VT13. В результате начнет мигать лампа HL7 «РАЗРЯД», свидетельствуя об исправности цепей разрядки.

Аналогично работает прибор с подключенной аккумуляторной батареей. В режиме «1Ц» сразу начинается зарядка циклами (имеется в виду, что напряжение батареи не превышает порогового напряжения 12,8-13В).

Лампа HL6 горит при зарядном токе 2 А или HL5 при токе 5А. Нажатием кнопочного выключателя SB1 «РАЗРЯД» на запускающий вход порогового выключателя подается напряжение, в результате чего он срабатывает. Разрядка индицируется лампой HL7.

В режиме «NЦ» при подключении аккумуляторной батареи работа может начаться как с зарядки, так и с разрядки — в зависимости от того, в каком режиме в момент включения находился пороговый выключатель. При желании установить какой-то конкретный режим, переключатель SA1 сначала устанавливают в положение «1Ц», а после этого — в положение «NЦ».

В режиме ручной зарядки «Р3» контакты переключателя блокируют пороговый выключатель, и тиристор управляется непосредственно от источника постоянного тока.

Настройка устройства

Для налаживания прибора понадобятся регулируемый источник постоянного тока с максимальным напряжением 15 В и током нагрузки не менее 0,2 А, контрольный вольтметр или сигнальная лампа на напряжение 27 В.

Перед налаживанием движки подстроечных резисторов устанавливают в положение максимального сопротивления, контрольный вольтметр или сигнальную лампу подключают между коллектором VT8 и общим проводом (зажим Х2), а источник питания подключают (с соблюдением полярности) к выходным зажимам прибора. Переключатель SA4 устанавливают в положение «1Ц», выключатель SA3 — в положение «КОНТРОЛЬ». Выходное напряжение источника постоянного тока должно быть 14.8 — 15В.

После включения прибора в сеть на контрольном вольтметре должно быть напряжение около 26 В. Плавно перемещая движок подстроечного резистора R16, добиться, чтобы контрольное напряжение упало скачком до нуля.

Устанавливают на источнике напряжение 12,8 — 13В и плавно перемещают движок резистора R12 до появления на контрольном вольтметре скачком напряжения 26 В. Нажимают кнопку SB1 — контролируемое напряжение вновь должно упасть до нуля. Установив на источнике напряжение 10,5-10,8В, перемещают движок резистора R21 до появления на контрольном вольтметре напряжения 26В.

После этого следует проверить и при необходимости подобрать точнее уровни срабатывания автомата при изменении напряжения источника питания.

Установка верхнего порога 15 В не вызывает выкипания электролита после полной зарядки батареи, потому что батарея в этом случае включается автоматом на зарядку на 8 — 10 минут и отключается примерно на 2 часа. Наблюдения показали, что при работе в таком режиме даже в течение нескольких месяцев уровень электролита в банках аккумуляторов не понижается.

Детали

Постоянные резисторы: R33 — остеклованное проволочное типа ПЭВ-20 или два резистора (включенных параллельно) по 15 Ом (типа ПЭВ-10), остальные — МЛТ указанной на схеме мощности, подстроечные резисторы R12, R16, R21 — типа ППЗ или другие.

Кроме указанных на схеме, транзисторы VT1 VT5 VT6, VT9 могут быть П307, П307В, П309: VT8 — ГТ403А, ГТ403В — ГТ403Ю; VT2, VTЗ, VT7, VT10, VT11 — МП20, МП20А, МП20Б, МП21, МП21А — МП21Е; VT4, VT12 — КТ603А, КТ608А, КТ608Б; VT13 — любой из серий П214 — П217.

Диоды VD1 — VD4 могут быть, кроме указанных на схеме, Д242, Д243, Д243А, Д245, Д245А, Д246, Д246А, Д247; VD5, VD7, VD9 — Д226В + Д226Д, Д206 — Д211; VD6 — КД202Б КД202С; VD8, VD12 — Д223А, Д223Б, Д219А, Д220. Вместо стабилитронов Д808 подойдут Д809 -к Д813, Д814А -г Д814Д.

Тиристор может быть КУ202А -к КУ202Н. Конденсаторы С1, С3 — К50-6; С2 — К50-15. Лампы HL1 т HL3, HL7 — СМ28, HL4 HL6 — автомобильные на напряжение 12 В и мощность 50+40 Вт (используется нить на 50 Вт).

Выключатель SA1 — тумблер ТВ (ТП), выключатели SA2, SA3 — тумблеры ВБТ, кнопочный выключатель SB 1 — КМ-1, переключатель SА — типа ПКГ (ЗПЗН). Трансформатор Т1 — готовый, ТН-61 -220/127-50 (номинальная мощность 190 Вт). Вольтметр постоянного тока — типа М4200 со шкалой на 30 В.

Источник: Ходасевич А. Г, Ходасевич Т. И., Зарядные и пуско-зарядные устройства, Выпуск 2.

Источник: http://radiostorage.net/3251-ustrojstvo-dlya-avtomaticheskoj-trenirovki-akkumulyatorov-12v-40-100ach.html