Каким прибором измеряют емкость конденсатора?

Как определить емкость конденсатора: 4 рабочих способа

Каким прибором измеряют емкость конденсатора?

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

  • по кодовой или цветной маркировке деталей;
  • с помощью измерительных приборов;
  • с использованием формулы.

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

Рис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

Режим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

  1. Измерьте напряжение источника питания щупами контактов измерительного прибора.
  2. Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
  3. Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
  4. Замерьте напряжение образованной цепи с помощью мультиметра.
  5. Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
  6. Вычислите 95% от полученного значения. Запишите показатели измерений.
  7. Возьмите секундомер и включите его одновременно с убиранием закоротки.
  8. Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
  9. По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.

Рис. 3. Измерение с помощью тестера. Проверка

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f – частота тока, а Xc – ёмкостное сопротивление.

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).

Рис. 4. Простая схема

Алгоритм вычисления простой:

  1. Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
  2. Измерьте амплитуды напряжений на конденсаторе и на резисторе.
  3. Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
  4. Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C0.

Рисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора.  Для этого используют формулу:

C = α * Cq / U , где α –  угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

  • миллифарады (mF, мФ ) = 10-3 Ф;
  • микрофарады (µF, uF, mF, мкФ) = 10-3 мФ = 10-6 Ф;
  • нанофарады (nF, нФ) = 10-3 мкФ =10-9 Ф;
  • пикофарады (pF, mmF, uuF) = 1 пФ = 10-3 нФ = 10-12 Ф.

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Рис. 6. Маркировка крупных конденсаторов

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Читайте также  Прибор для измерения частоты переменного тока

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

  1. Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
  2. Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
  3. Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 100 =1; 101 = 10; 102 = 100 и т. д. до 106.

Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10-3; 8 = 10-2; 9 = 10-1.

Пример:

  • 256 обозначает: 25× 105 = 2500 000 пФ = 2,5 мкФ;
  • 507 обозначает: 50 × 10-3 = 50 000 пФ = 0, 05 мкФ.

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 103 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

  • B = ± 0,1 пФ;
  • C = ± 0,25 пФ;
  • D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
  • F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
  • G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
  • J = ± 5%.
  • K = ± 10%.
  • M = ± 20%.
  • Z = от –20% до + 80%.

Изделия с кодовой маркировкой изображены на рис. 7.

Рис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

Рис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

в помощь

Источник: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Способы определения емкости конденсатора

Каким прибором измеряют емкость конденсатора?
Иногда на конденсаторе не указывается его маркировка. Как узнать тогда реальную его емкость, если специального оборудования под рукой нет, а устройство без обозначений? Тогда на помощь приходят различные подручные средства и формулы. Прежде чем приступать к работе, необходимо помнить о том, что конденсатор перед проверкой должен быть разряжен (следует разрядить его контакты). Для этого можно использовать обычную отвертку с изолированной ручкой. Держась за ручку отверткой коснуться контактов, таким образом их замыкая. Далее мы подробно расскажем, как определить емкость конденсатора мультиметром, предоставив инструкцию с видео примером.

Использование режима «Cx»

После того, как контакты закоротили, можно осуществлять определение сопротивления. Если элемент исправлен, то сразу после подключения он начнет заряжаться постоянным током. В этом случае сопротивление отобразиться минимальное и будет продолжать расти.

В случае если конденсатор неисправен, то мультиметр будет сразу указывать бесконечность или будет указывать нулевое сопротивление и при этом пищать. Такая проверка осуществляется, если конструкция полярная.

Для того чтобы узнать емкость необходимо иметь мультиметр с функцией измерения параметра «Сх».

Определить емкость с помощью такого мультиметра просто: установить его в режим «Сх» и указать минимальный предел измерения, которым должен обладать данный конденсатор. В таких мультиметрах есть специальные гнезда с определенными пределами измерения. В эти гнезда вставляется конденсатор согласно его пределу измерения и происходит определение его параметров.

Если в тестере таких гнезд нет, то определить емкость можно с помощью измерительных щупов, как показано на фото ниже:

Важно! В отдельной статье мы рассказывали о том, как проверить исправность конденсатора. Рекомендуем также ознакомиться с этим материалом!

Применение формул

Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.

Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.

Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.

Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.

Читайте также  Все виды обогревательных приборов

Для этого необходимо выполнить следующее:

  1. С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
  2. Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
  3. С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:
  4. Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
  5. Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:
  6. Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
  7. Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.

А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.

Если есть частота тока и Хс, можно определить емкость по формуле:

Другие методики

Также емкость можно определить и с помощью баллистического гальванометра. Для этого используется формула:

где:

  • Cq — баллистическая постоянная гальванометра;
  • U2 — показания вольтметра;
  • a2 — угол отклонения гальванометра.

Определение значения методом амперметра вольтметра осуществляется следующим образом: измеряется напряжение и ток в цепи, после чего значение емкости определяется по формуле:

Напряжение при таком методе определения должно быть синусоидальным.

Измерение значения возможно и при помощи мостиковой схемы. В этом случае схема моста переменного тока указывается ниже:

Здесь одно плечо моста образуется за счет элемента, который необходимо измерить (Cx). Следующее плечо состоит из конденсатора без потерь и магазина сопротивлений. Оставшиеся два плеча состоят из магазинов сопротивлений. Подключаем в одну диагональ источник питания, в другую – нулевой индикатор. И рассчитываем значение по формуле:

Напоследок рекомендуем просмотреть полезное видео по теме:

Это все, что мы хотели рассказать вам о том, как определить емкость конденсатора мультиметром. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

Источник: https://samelectrik.ru/sposoby-opredeleniya-emkosti-kondensatora.html

Измеритель емкости конденсаторов

Каким прибором измеряют емкость конденсатора?

> Инструмент > Измеритель емкости конденсаторов

Мастера, ремонтирующие радиоаппаратуру, чаще всего сталкиваются с пробоем конденсаторов либо со снижением емкости. Чтобы узнать, исправна деталь или нет, надо измерить емкость конденсатора. Для этого существуют различные приборы.

Измерение емкости конденсатора

Устройство и характеристики конденсатора

Конденсатор содержит две обкладки из металла, между которыми помещается диэлектрик. Для диэлектрика используются воздух, пластик, слюда, картон, керамические материалы.

В более современных деталях вместо металла применяется фольга, которую сворачивают в рулоны. Таким образом, при меньших габаритах конденсатора можно повысить его емкость.

Конденсаторы классифицируются по диэлектрическому материалу, способам монтажа, форме обкладок и т. д. По полярности они делятся на:

  • электролитические, или оксидные, обладающие полярностью;
  • неполярные.

Электролитические конденсаторные элементы требуют обязательного соблюдения полярности при включении. Диэлектриком в них служит оксидный слой, формирующийся на танталовом (алюминиевом) аноде. Катод – электролит в виде жидкости или геля. Измерение емкости конденсатора такого типа должно проводиться, учитывая маркировку полюсов детали.

Электролитический конденсатор

Основное свойство конденсатора – накопление электрического заряда, благодаря которому он широко используется в различных фильтрах. С его помощью можно передавать сигнал между каскадами усиления, разделять высокие и низкие частоты и т.д.

Параметры конденсатора:

  1. Емкость. Способность к накоплению заряда, зависящая от площади обкладок, расстояния между ними, характера применяемого материала в качестве электролита. Измеряется в фарадах;
  2. Номинальное напряжение. Показывает, при каком напряжении возможна длительная и стабильная работа элемента. Если параметр превышается, может наступить пробой.

Возможные неисправности конденсатора

Различают несколько видов неисправностей конденсаторов, влияющих на работу электрической схемы:

  • полный пробой (замыкание между обкладками);
  • нарушение внешней герметичности от механических повреждений;
  • уменьшение емкости;
  • возрастание внутреннего сопротивления;
  • уменьшение напряжения, при котором наступает обратимый пробой элемента.

В большинстве случаев детали выходят из строя по причине продолжительной работы в условиях перегрева. Всегда важно обеспечить оптимальный режим температур для работы аппаратуры.

Как проверить исправность конденсатора

На первом этапе надо сделать визуальный осмотр детали на наличие механических повреждений, деформации корпуса, изменения цвета. У электролитических элементов это разбухание в верхней части, которое может быть небольшим, но заметным в сравнении с исправными аналогами. Зачастую деталь внешне выглядит нормально. Тогда для ее проверки потребуются специальные приборы:

  • мультиметр, в котором реализована функция измерения емкости;
  • специальный измеритель емкости конденсаторов;
  • LC-метр;
  • прибор ESR.

Используя мультиметр, иногда трудно сделать вывод о неисправности, так как емкость поврежденного конденсаторного элемента снижается на очень малые величины. С помощью LC-метров или специальных приборов определить ее значение можно точнее. Для измерений емкости электролитических конденсаторов  служат приборы ESR. Причем замеры производятся без выпаивания деталей из схемы.

Читайте также  Прибор для плавного пуска электродвигателя

Проверка конденсатора мультиметром

Проверка конденсатора мультиметром

Если нет специального прибора, то емкостные замеры неполярных элементов можно производить мультиметром, измеряющим сопротивление. При этом они выпаиваются из платы.

  1. На шкале мультиметра установить предел «200 кОм». Предел шкалы меняется в зависимости от номинального емкостного значения;
  2. Разрядить выпаянные конденсаторные элементы, так как может существовать остаточный заряд. Разряд производится замыканием их выводов накоротко;
  3. Щупы прибора подключить к конденсаторным выводам и наблюдать за его показаниями. Стараться не прикасаться к контактной части щупов руками.

Появившееся на экране значение сопротивления будет постепенно увеличиваться, а затем покажет «1», на цифровом приборе означающую «бесконечность». У конденсаторов с малой емкостью процесс изменения сопротивления ускорен так, что можно его не зафиксировать.

Важно! Исправный заряженный конденсаторный элемент обладает «бесконечным» сопротивлением.

Если деталь неисправна, сразу, без предшествующего нарастания, будут видны значения «1», указывающие на обрыв внутри детали, или «0» – внутреннее КЗ. Плавное нарастание сопротивления наблюдается из-за зарядки детали от батареи мультиметра.

Аналоговый прибор для проверки конденсатора

Можно применить для емкостных замеров и старые аналоговые тестеры. При этом наблюдения ведутся за движениями стрелки. Она должна сразу отклониться вправо со скоростью, зависящей от конденсаторной емкости, продолжая свое медленное движение до пределов шкалы. Если она не дергается или, отклонившись, останавливается, это говорит о повреждении. О том же сигнализирует резкий бросок до предельных цифр.

Важно! Проверке мультиметром можно подвергнуть конденсаторные элементы емкостью до 0,25 мкФ. Для меньших параметров проверка ведется на LC-метрах.

Измерение фактических емкостных значений

Вышеописанным способом невозможно определить количественные емкостные значения, можно только сделать вывод об исправности конденсаторного элемента. По приборам, измеряющим емкость в фарадах, сразу определяется ее отклонение от номинального параметра. Нулевое значение говорит о пробое, сниженное – тоже сигнализирует о том, что деталь нужно заменить.

Опосредованно о величине емкости можно судить по скорости нарастания сопротивления в момент подключения к мультиметру. Чем она ниже, тем больше емкость. Можно подсчитать ее примерное значение, подключая исправные конденсаторные элементы с заранее известной емкостью и производя замеры времени в секундах, за которое сопротивление достигает «бесконечности». Вывод делается на основании сравнения с испытываемым конденсаторным элементом.

На лицевой панели мультиметра, предназначенного для емкостных замеров, существуют специальные входные разъемы СХ, промаркированные «плюсом» и «минусом». Вместо них могут присутствовать обыкновенные щупы. Для измерения конденсаторные элементы вставляются в эти разъемы с обязательным соблюдением полярности у электролитических деталей. Маркировка присутствует и на самих конденсаторах. Для неполярных элементов это не имеет значения. Предельное значение шкалы измеряемой емкости надо выставлять, исходя из конденсаторных параметров.

Важно! Перед подсоединением к прибору необходимо снять остаточный заряд с конденсатора.

Измерение прибором ESR

ESR означает эквивалентное последовательное сопротивление, параметр очень важный для электролитического конденсатора. Когда это сопротивление увеличивается, зарядный ток уменьшается, что вызывает сбои в работе электрической цепи. Причем емкость, измеренная традиционными способами, может не выходить из границ нормы. Особенно влияние эквивалентного сопротивления заметно у деталей емкостью больше 5 мкФ. Для стабильной работы параметр не должен превышать 1 Ом.

При проверке конденсаторных элементов без выпаивания из платы такой аппарат дает более точные результаты. Попытки аналогично замерить параметры детали мультиметром не дадут достоверной картины. Рядом с конденсатором существуют другие элементы: индуктивности, сопротивления и т.д., которые вносят искажающее влияние. Обычно делают вывод об исправности конденсаторного элемента с помощью косвенных измерений либо параллельно ему припаивают другой с идентичными характеристиками. Это возможно только в низковольтных цепях.

Снижение напряжения пробоя конденсатора

Как проверить конденсатор мультиметром

Мастерам-радиолюбителям может встретиться случай, когда все характеристики конденсатора в норме при замере мультиметром, но при работе в схеме наблюдаются признаки его пробоя. Это происходит при снижении напряжения пробоя ниже номинальной величины. Если деталь рассчитана на напряжение 25 В, а пробой наступает при 15 В, то при измерении мультиметром не будет выявлена неисправность конденсаторного элемента, так как пробой имеет обратимый характер.

Для определения такой неисправности надо использовать источник постоянного тока с возможностью регулировать уровень напряжения. Подключив к нему деталь и постепенно увеличивая подводимое напряжение, выясняется наличие повреждения, заметное по резкому возрастанию тока вплоть до срабатывания защитного отключения ИП.

Измерения конденсаторной емкости можно проводить разными способами. Просто обнаружить неисправный элемент можно омметром, более точные результаты получаются при использовании LC-метров и приборов ESR.

Подключаем самостоятельно трехфазный электродвигатель в 220Вт

Источник: https://elquanta.ru/instrument/izmeritel-emkosti-kondensatorov.html

Каким прибором измеряют емкость конденсатора?

Каким прибором измеряют емкость конденсатора?

В наше время, когда, практически, все источники питания радиоэлектронной аппаратуры строятся по импульсным схемам, одним из наиболее востребованных приборов ремонтника есть измеритель ESR электролитических конденсаторов или ESR метр. Долгое время я проверял исправность таких конденсаторов цифровым измерителем ёмкости, заряжающим конденсаторы высокочастотной пилой.

Но, так как этот прибор был изготовлен более 10 лет назад, на рассыпухе — мелкая логика и светодиодные индикаторы, — пользоваться таким устаревшим прибором, да ещё и без «настоящего» измерителя ЭПС, считаю сейчас даже просто морально некошерным.

Поэтому, с момента освоения прошивки современных микропроцессоров, я всё время мечтал о схеме, отвечающей требованиям нашего времени — минимум деталей, современная элементная база и схемное решение, одновременное отображение значения C и ESR на LCD, никаких реле, рубильников и прочей лабуды, требующей лишних движений. И вот, наконец-то, после многих лет просмотра не одного десятка схем (и всё не то) описание такого прибора мне попалось.

Журнал «Радио» №6 за 2010 год, страница 19 — в это схемотехническое и программное решение я влюбился с первого взгляда

Источник: https://1000eletric.com/kakim-priborom-izmeryayut-emkost-kondensatora/