Как рассчитать защиту электродвигателя?

Содержание

Автомат защиты электродвигателя — как правильно подобрать?

Как рассчитать защиту электродвигателя?

При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

  • Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
  • Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
  • Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.

Управляющая и защитная автоматика для двигателя на видео:

  • Отключение установки, если нагрузка перестала подаваться на вал.
  • Защита силового агрегата от долгих перегрузок.
  • Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
  • Индикация рабочих режимов, а также оповещение об аварийных состояниях.

Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.

Расчет автомата для электродвигателя

Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.

Внутреннее устройство автомата защиты двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Заключение

В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.

Источник: https://yaelectrik.ru/jelektroshhitok/avtomat-zashhity-elektrodvigatelya

Расчет защиты электродвигателя М1

Как рассчитать защиту электродвигателя?

< Предыдущая СОДЕРЖАНИЕ Следующая >

Перейти к загрузке файла

Ток срабатывания защиты от КЗ:где — пусковой ток двигателя;- коэффициент запаса, учитывающий апериодическую составляющую пускового тока машины [18, c.5].Номинальный ток двигателя:где кратность пускового тока.Проверка чувствительности защиты осуществляется по формуле:Защита удовлетворяет требованию необходимой чувствительности.

Выбор трансформатора тока

К установке принимаются трансформаторы тока типа ТОЛ-10-100/5 [8]. Защита строится по двухфазной однорелейной схеме «разность токов двух фаз», коэффициент схемы в таком случае равен:Данные трансформатора тока:номинальный первичный ток:номинальный вторичный ток:коэффициент трансформации:номинальная вторичная нагрузка:номинальная предельная кратность вторичной обмотки для защиты класса 10Р при вторичной нагрузке равной номинальной [8, табл А1]: .Предельная расчетная кратность:

7,8

Перейти к загрузке файла

Для расчета дифференциальной защиты трансформатора токи короткого замыкания в точках 2 и 4 приводятся к напряжению стороны ВН — 110 кВ:Далее защита предварительно отстраивается от наибольшего сквозного тока внешнего трехфазного короткого замыкания — в точке К2:Дифференциальная защита трансформатора реализуется на реле РСТ15 УХЛ4 производства ОАО «Чебоксарский электроаппаратный завод» [23]. Реле требует оперативного питания постоянным напряжением 220 В.Ток срабатывания защиты по условию отстройки от броска тока намагничивания:где -коэффициент запаса по [24, с. 5];номинальный ток трансформатора на стороне 110 кВ;Производится расчет тока срабатывания защиты по условию отстройки от тока небаланса.Первая составляющая тока небаланса, обусловленная разнотипностью трансформаторов тока:где — допустимая полная погрешность трансформаторов тока;трансформаторов тока для дифференциальной защиты трансформатора [1, с.503].для реле РСТ15, так как оно отстроено от бросков тока намагничивания с апериодической составляющей [25, с. 62];- ток трехфазного короткого замыкания в точке К2, приведенный к стороне 110 кВ.

Вторая составляющая тока небаланса обусловлена наличием устройства РПН:

где диапазон регулирования напряжения под нагрузкой.

Суммарный ток небаланса:

Тогда первичный ток срабатывания защиты на стороне 110 кВ:

где коэффициент запаса принимается равным

1.3 — [6, с.216]

Принимается большее из двух предварительных значений, таким образом расчетным условием для выбора является отстройка от тока небаланса:

Предварительная проверка чувствительности. Чувствительность оценивается по минимальному току двухфазного КЗ в точке К4, приведенному к стороне 110 кВ:

Выбираются трансформаторы тока таким образом, чтобы номинальные вторичные токи не превышали 5 А.

К установке на стороне ВН принимается ТОЛ-110III-200/5 производства ТД трансформатор [26]; К установке на стороне СН принимается ТОЛ-35-III-IV-1 600/5 производства ОАО «Свердловский завод трансформаторов тока»[12]; К установке на стороне НН принимается ТОЛ-10-2000/5 производства ОАО «Свердловский завод трансформаторов тока» [8]. Производится проверка на допустимую кратность перегрузки при КЗ по (48), при этом производится приведение токов срабатывания защиты к сторонам 35 и 10 кВ:

Для ВН:

Для СН:

Для НН:

Выбранные трансформаторы тока удовлетворяют условию проверки на допустимую перегрузку.

Таблица 1 — Расчет вторичных токов трансформаторов тока в номинальном режиме

Наименование Обозначение, формула Расчет на ст. ВН Расчет на ст. СН Расчет на ст. НН
Ном. ток трансформатора 10000/(*110) =52,5 А 10000/(*35) =164,96 А 10000/(*10) =577,35 А
Схема соединения обмоток Y0 Y Y
Схема соединенияТТ Y Y Y
Коэффициент схемы 1 1 1
Коэффициент трансформации ТТ 200/5=40 600/5=120 2000/5=400
Номинальный вторичный ток ТТ 1,31 1,37 1,44

Page 3

Газовая защита реализуется на базе газовых реле Бухгольца двухпоплавковых типа BF80/10-11 производства фирмы EMB (Германия) [27] с одним замыкающим герконовым контактом верхней системы коммутации (для аварийной сигнализации), и один замыкающим герконовым контактом в нижней цепи коммутации — для цепи отключения.

Параметры реле:

Мощность трансформатора: S?10 кВА;

Условный проход трубы: 80 мм;

Форма фланца: круглая;

Диаметр фланца: 200 мм.

писок использованных источников

1. Андреев, В. А. Релейная защита и автоматика систем электроснабжения: учебник для вузов/ 6-е изд., стер.- М.: Высш. шк., 2008.- 639 с.: ил.

2. Андреев, В. А. Релейная защита систем электроснабжения в примерах и задачах: учеб. пособие / В. А. Андреев.- М.: Высш. Шк., 2008.- 252 с.: ил.

3. Каталог автоматических воздушных выключателей серии «Электрон» завода ОАО «Контактор».- Режим доступа: www.kontaktor.ru

4. Шабад, М. А. Защита трансформаторов 10 кВ.- М.: Энергоатомиздат, 1989.- 144 с.: ил.

5. Каталог предохранителей типа ПКТ Курского электроаппаратного завода.- Режим доступа: www.keaz.ru.

6. Шабад, М. А. Расчеты релейной защиты и автоматики распределительных сетей: Монография/ М.А. Шабад.- СПб.: ИЭИПК, 2003.- 4-е изд, перераб. и доп.- 350 с.: ил.

7. Каталог реле типа РС80М2,3 группы компаний «Энергоинтеграция».- Режим доступа: transenergy.ru.

8. Каталог трансформаторов тока типа ТОЛ-10 производства ОАО «Свердловского завода трансформаторов тока».- Режим доступа: www.cztt.ru.

9. Каталог реле РП23 производства ОАО «Чебоксарский электроаппаратный завод».- Режим доступа: www.elec.ru.

10. Каталог реле РУ21 производства ОАО «Чебоксарский электроаппаратный завод».- Режим доступа: производства ОАО «Чебоксарский электроаппаратный завод».- Режим доступа: www.elec.ru.

11. Каталог реле РСТ40 производства ООО «Реле и автоматика».- Режим доступа: www.rele.ru.

12. Каталог трансформаторов тока типа ТОЛ-35 производства ОАО «Свердловского завода трансформаторов тока».- Режим доступа: www.cztt.ru.

13. Леньков Ю. А., Хожин Г. Х. Выбор коммутационных аппаратов и токоведущих частей распределительных устройств электрических станций и подстанций.- Павлодар. Изд-во ПГУ, 2002 — 210 с.

14. Каталог реле РПВ01 производства ОАО «Чебоксарский электроаппаратный завод».- Режим доступа: www.elec.ru.

15. Овчинников В.В. Автоматическое повторное включение.- М.: Энергоатомиздат, 1986.- 96 с.: ил.

16. Каталог вакуумных выключателе типа ВВУ-СЭЩ-35 производства ЗАО «Группа компаний «Электрощит»-ТМ Самара».- Режим доступа: www.electroshield.ru.

17. Каталог трансформаторов тока типа ТЗЛ-1 производства ОАО «Свердловский завод трансформаторов тока».- Режим доступа:

www.cztt.ru.

18. Терминалы релейной защиты синхронных и асинхронных электродвигателей 6-10 кВ, Расчет уставок, Методические указания.- Санкт Петербург, 2012.- Режим доступа: www.mtrele.ru.

19. Техническое описание реле РТЗ51 производства ОАО «Чебоксарский электроаппаратный завод».- Режим доступа: www.cheaz.ru.

20. Техническое описание реле РС80М.- Режим доступа: rzalab.narod.ru.

21. Технические описание реле РН112 производства ООО «Новатек электро».- Режим доступа: www.novatek-electro.com.

22. Техническое описание трансформатора напряжения НОМ10.- Режим доступа: www.forca.ru.

23. Техническое описание реле РСТ15 производства ОАО «Чебоксарский электроаппаратный завод».- Режим доступа: www.elec.ru.

24. Руководящие указания по релейной защите. Вып. 13Б. Релейная защита понижающих трансформаторов и автотрансформаторов 110-500 кВ: Расчеты.- М.: Энергоатомиздат, 1985,- 96 с., ил.

Источник: https://studbooks.net/1936013/matematika_himiya_fizika/raschet_zaschity_elektrodvigatelya

Защита электродвигателя автоматическим выключателем. Практические расчеты

Как рассчитать защиту электродвигателя?

Особенностью защиты электродвигателя от перегрузок и короткого замыкания является повышенный пусковой ток, который может в семь раз превышать номинальное значение. Самые сильные перегрузки на старте свойственны асинхронным двигателям с короткозамкнутым ротором, которые наиболее используемые в быту и на производстве, поэтому правильная их защита, а также предохранение электропроводки цепей питания электродвигателей являются особенно актуальными.

В бытовой электротехнике проблема с большими стартовыми токами электродвигателей решена при помощи автоматических выключателей, у которых отключение (отсечка) происходит не сразу после превышения номинального тока, а спустя некоторое время.

Данного отрезка времени, который зависит от время-токовой характеристики защитного автомата, должно хватить, чтобы вал двигателя раскрутился до рабочих оборотов, и потребление тока снизилось до номинального уровня. Но автоматические выключатели не обладают гибкостью точной настройки, поэтому для защиты электрических двигателей применяются специальные защитные устройства.

Обычный трехфазный автоматический выключатель часто используется для защиты электродвигателей

Функции защитных устройств электродвигателей

Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:

  • Защита от тока короткого замыкания в цепи питания или внутри электродвигателя;
  • Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
  • Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;Современные мотор автоматы с ручным управлением
  • Тепловая защита от перегрева двигателя, осуществляемая при помощи дополнительных термодатчиков, установленных на кожухе или внутри электродвигателя;
  • Предохранение от некачественного напряжения;
  • Обеспечение выдержки времени для охлаждения двигателя после его аварийной остановки после перегрева;
  • Индикация режимов работы и аварийных состояний;
  • Опционально – отключение при исчезновении нагрузки на валу (например, для водяных насосов);
  • Совместимость с автоматическими системами контроля и управления.

Мотор автомат с ручной настройкой и автоматическим управлением

Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором. Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины. Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.

Контактор электромотора с тепловым реле

Подбор автоматического выключателя

Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей. Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения. Выбор защитного автомата осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.

Трехфазный автоматический выключатель

Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта. Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.

Времятоковая характеристика автоматических выключателей категории «C»

Для предотвращения ложного срабатывания автоматического выключателя при запуске электромотора необходимо, чтобы кратковременный пусковой ток (Iпуск)  не превышал значение отсечки (мгновенного срабатывания, Iмгн.ср) автомата. Отношение пускового (Iпуск) и номинального тока (In) можно узнать из бирки или паспорта электродвигателя, максимальное значение Iпуск/ In=7.

Если известна только мощность электродвигателя, то рассчитать номинальный ток можно по формуле In= Рn/(Un*√3*η*cosφ), где Рn – мощность,  Un – напряжение, η – КПД, cosφ – коэффициент реактивной мощности двигателя.

Бирка двигателя с указанием мощности

Практические расчеты

На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср  ≥ Kн * Iпуск. Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In). Необходимое условие: IAB > In/Кт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.

Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать In­ = Рn/(Un*√3*η*cosφ) =  5500/(380*√3*0,85*0,8) = 12,28 (А). Допустим, автомат устанавливается в шкаф, Кт = 0,85,  значит In/Кт = 12,28/0,85 = 14,44 (А). Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).

При расчетах понадобится калькулятор

Теперь нужно проверить условие Iмгн.ср  ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А). Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно. Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.

Современная электрозащита двигателей

На рынке электротехнического оборудования все большую популярность набирает защита электродвигателя при помощи универсальных защитных устройств, так называемых мотор автоматов, которые выполняют все приведенные выше защитные функции. Данные устройства имеют модульную конструкцию и устанавливаются на DIN рейку и управляют работой силовых контакторов. Кроме приведенных функций, некоторые мотор автоматы позволяют точно регулировать различные параметры защитного отключения.

Мотор автомат с датчиками — катушками тока

Существует много разновидностей современных мотор автоматов, которые различаются коммутируемой мощностью, набором функций, способом управления, схемой подключения и внешним видом. Чтобы выбрать подходящий аппарат защиты для конкретного двигателя, необходимо знать его параметры номинального и пускового тока, а также нужно определиться с требуемым набором защитных функций и опций.

Стоимость мотор автоматов прямо пропорциональна мощности электродвигателя и функциональным защитным возможностям. Мировыми лидерами по производству защитных мотор автоматов являются такие известные бренды: Schneider Electric, ABB, IEK, Novatek electro, и другие.

Разнообразие представленных на рынке устройств защиты электродвигателей

Приведенный на рисунке ниже автомат защиты двигателя (универсальный блок) позволяет настраивать номинальный и пусковой ток электродвигателя, допустимые пороги напряжения, может отслеживать механическую нагрузку на валу электромотора. Также осуществляется контроль за качеством изоляции обмоток электродвигателя с возможностью установки запрета на включение.

Постоянный мониторинг множества параметров работы позволяет продлить срок эксплуатации двигателя и приводимого в действие оборудования. Специальный дополнительный блок обмена информацией позволяет подключить устройство к автоматическим системам контроля.

Универсальный блок защиты

Защита электромоторов на производстве

Очень часто, в момент включения мощных потребителей электроэнергии (P>100кВт) на мощных производствах во всей электросети, подключенной к трансформаторной подстанции, напряжение опускается ниже установленного минимума.

При данном кратковременном падении напряжения рабочие электромоторы не отключаются, но теряют обороты. При возобновлении нормального напряжения двигатель снова начинает набирать обороты, то есть работать в режиме запуска (перегрузки). Данное явление называют самозапуском.

Изменения скоростей двигателя в разных режимах самозапуска

Если биметаллическая пластина автоматического выключателя или термореле была достаточно прогрета из-за продолжительной нормальной работы электромотора, то в режиме самозапуска тепловой расцепитель может сработать, вызвав ложное срабатывание.

Для мощных электродвигателей на предприятиях для поддержания нормального режима работы, в том числе и после самозапуска, применяют релейную защиту с трансформаторами тока, включенными в цепь питания.

Схема релейной защиты электродвигателя

Отклонения от нормы в силовых проводах электродвигателя с подключенными последовательно первичными обмотками токовых трансформаторов используются для срабатывания защитных реле, которые подключатся к вторичным обмоткам токовых трансформаторов по специальным схемам. Сложные расчеты данных мощных систем защиты осуществляются штатными сотрудниками, заведующими энергоснабжением предприятия, поэтому теория производственной электротехники не входит в тему данной статьи.

Источник: http://infoelectrik.ru/elektrodvigateli/avtomat-zashhity-dvigatelya.html

Как рассчитать защиту электродвигателя?

Как рассчитать защиту электродвигателя?

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.

Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.

Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя

Источник: https://electrikmaster.ru/zashhita-elektrodvigatelya/

Расчет уставок для цифровых устройств релейной защиты. Часть 3

Разместить публикацию Мои публикации Написать

Гондуров С.А., Михалев С.В., Пирогов М.Г., Захаров О.Г.
НТЦ «Механотроника», С-Петербург

В первой части данной работы [1] были рассмотрены примеры расчета уставок токовой отсечки, а во второй [2] — пример расчета уставок дифференциальных защит с применением дифференциальной токовой отсечки, уставки по току срабатывания которых меньше номинального тока электродвигателя.

Продолжим рассмотрение методик расчета уставок для цифровых устройств релейной защиты.

Часть 3. Алгоритм дифференциальной защиты электродвигателя с торможением

На рис. 3 в предыдущей части была приведена обобщенная структурная схема алгоритма торможения [3].

В блоках серий БМРЗ и БМРЗ-100, используемых для защиты электрических машин и трансформаторов, применяется алгоритм торможения, характеристика которого имеет два участка (рис. 7)

На рис. 7 приняты такие обозначения для уставок, задаваемых пользователем

  •  — уставка по начальному дифференциальному току срабатывания;
  •  — начальный ток торможения на участке б;
  •  — коэффициент торможения на втором участке тормозной характеристики.
  •  — коэффициент торможения на втором участке тормозной характеристики
  •  — коэффициент торможения на третьем участке тормозной характеристики

Для получения тормозной характеристики, подобной показанной ранее на рис. 4 (без изменения угла наклона в точке), необходимо уставку  задать равной .

Расчет значений всех токов производят по алгоритму, показанному на рис. 8, где начальные значения переменных обозначены как

Остальные обозначения следующие:

  •  — действующее значение дифференциального тока фазы А;
  •  — действующее значение тока торможения фазы А;
  •  – признак срабатывания реле по дифференциальному току фазы А.

3.1 Расчет уставок защиты для асинхронного двигателя с устройством плавного пуска

Методика расчета сопровождается практическими примерами, в которых используется асинхронный электродвигатель АО-3150-6000.

Исходные данные для расчета:

  • Мощность на валу двигателя:
  • Коэффициент мощности:
  • Напряжение:
  • КПД:
  • Кратность пускового тока:

Значение тока трехфазного КЗ на вводах питания электродвигателя и на вводах устройства плавного пуска (УПП):

Пуск двигателя плавный, в соответствии с настройками УПП, максимальная кратность пускового тока:

Двигатель участвует в самозапуске (в том числе и при переключении ячеек питания).

Источник: https://1000eletric.com/kak-rasschitat-zaschitu-elektrodvigatelya/

Расчет защиты электродвигателя мощностью 800 (кВт)

Как рассчитать защиту электродвигателя?

Здравствуйте, дорогие читатели сайта «Заметки электрика».

После прочтения сегодняшней статьи Вы научитесь самостоятельно производить расчет защиты электродвигателя мощностью 800 (кВт).

Расскажу небольшую предисторию.

У нас на распределительной подстанции напряжением 10 (кВ), состоящей из двух сборных секций шин, питаются электродвигатели восьми дымососов (вентиляторов) для нужд газоочистки. Последнее время мне все чаще стали передавать замечания по тяжелому пуску этих двигателей, т.е. двигатели запускались не сразу и отключались во время пуска от токовой отсечки.

Данные замечания конечно же нельзя оставлять без внимания.

И первое, что мы сделали, это проверили уставки релейной защиты на самых «проблемных» дымососах. Скажу сразу, что отклонений по уставкам не было, что собственно и не удивило,  т.к. мы своевременно по графику ППР проводим проверку релейной защиты по всем подстанциям предприятия.

Далее мне в голову пришла мысль пересчитать уставки релейной защиты этих дымососов. Т.к. все дымососы были одной мощностью 800 (кВт), то расчет защиты сводился к минимуму — произвести расчет защиты одного электродвигателя мощностью 800 (кВт) и сравнить полученные значения с действующими уставками. Кстати, двигатели асинхронные, просто забыл упомянуть выше.

Итак поехали…

Расчет защиты электродвигателя 800 (кВт)

Перейду сразу к практике. Позвонив электрику газоочистки, я запросил у него технические данные на электродвигатели дымососов (вентиляторов):

Остальные данные имелись в таблице уставок и прочей технической документации.

Это:

  • трансформатор тока с коэффициентом трансформации 150/5
  • схема соединения трансформаторов тока — на разность токов двух фаз (схема прилагается, см. ниже)

Схема соединения трансформаторов тока (на разность токов):

На схеме я указал, где установлены реле токовой отсечки, максимальной токовой защиты от перегруза и реле земляной защиты.

В ячейке установлены 2 трансформатора тока типа ТОЛ-10 с коэффициентом 150/5. Оба трансформатора — двухобмоточные.

Первая обмотка (по схеме Т-1) используется для цепей релейной защиты и собрана по схеме на разность токов двух фаз. Вторая обмотка (по схеме Т-2) используется для цепей измерения и учета электроэнергии (электросчетчики, амперметры) и собрана по схеме неполная звезда.

1. Токовая отсечка (ТО)

Ток срабатывания токовой отсечки (ТО) от междуфазных коротких замыканий можно расчитать двумя способами.

Первый способ заключается в расчете пускового тока электродвигателя дымососа при полном напряжении питающей сети.

Во втором способе необходимо произвести расчет броска тока в первый момент короткого замыкания в сети.

Предпочтительнее является первый способ. Поэтому по нему я и произведу расчет защиты нашего электродвигателя.

Токовая отсечка у нас выполнена на токовых реле РТ-40 через промежуточное реле KL-1 (РП-23), которое замедляет действие защиты на 0,04 — 0,06 (сек.) при возникновении апериодической составляющей пускового тока. Поэтому в расчетах коэффициент апериодической составляющей мы не учитываем.

Найдем пусковой ток для электродвигателя при пуске от полного напряжения сети:

Найдем первичный ток срабатывания защиты:

Коэффициент надежности  обычно принимается равным 1,2. Коэффициент возврата реле смотрим по протоколам проверки релейной защиты. Он равен 0,85. Подставляем в формулу наши данные и получаем:

Найдем вторичный ток срабатывания защиты:

В нашем случае схема соединения трансформаторов тока выполнена на разность токов двух фаз, поэтому коэффициент схемы будет равен — 1,73. Коэффициент трансформации трансформаторов тока защиты равен 30 (150/5). Подставляем в формулу данные и получаем:

Проверим уставку токовой отсечки на чувствительность. Чувствительность защиты проверяется отношением двухфазного тока короткого замыкания на выводах электродвигателя к первичному току срабатывания защиты.

Ток трехфазного короткого замыкания мы берем из таблицы токов короткого замыкания, составленной мною для удобства расчетов, либо из проекта. Подставляя данные, получаем:

Коэффициент чувствительности, согласно ПУЭ, должен быть больше 2, что удовлетворяет нашему условию.

2. Максимальная токовая защита (МТЗ) от перегруза

Ток срабатывания максимальной токовой защиты (МТЗ) от перегруза рассчитывается от максимального рабочего (номинального) тока электродвигателя.

Найдем первичный ток срабатывания защиты:

Коэффициент надежности и возврата принимаем аналогичными, как при расчете токовой отсечки.

Найдем вторичный ток срабатывания защиты:

В нашем случае схема соединения трансформаторов тока выполнена на разность токов двух фаз, поэтому коэффициент схемы будет равен — 1,73. Коэффициент трансформации трансформаторов тока защиты равен 30 (150/5). Подставляем в формулу данные и получаем:

Проверим уставку максимальной токовой защиты от перегруза на чувствительность. Чувствительность защиты проверяется отношением двухфазного тока короткого замыкания на выводах электродвигателя к первичному току срабатывания защиты.

Ток трехфазного короткого замыкания мы берем из таблицы расчетов токов короткого замыкания, составленной мною для удобства, либо из проекта. Подставляя данные, получаем:

Коэффициент чувствительности согласно ПУЭ должен быть больше 2, что удовлетворяет нашему условию.

Выдержка по времени максимальной токовой защиты от перегрузки составляет 16 (сек.) и выполняется на реле времени.

Вывод

После расчета защиты электродвигателя дымососа сравним действующие и полученные результаты, и сделаем вывод. Чтобы нагляднее проводить сравнение уставок, занесу данные в таблицу.

В первой колонке таблицы указаны виды защит электродвигателей дымососов, в следующих колонках указаны действующие и расчетные уставки.

Итак, что мы видим.

А видим мы то, что ранее произведенный расчет защиты электродвигателя дымососа мощностью 800 (кВт) был произведен не верно.

Но это еще не все. После проделанных мною расчетов я стал искать причину не верного расчета, потому как у меня в голове не укладывалось, почему проектная организация могла так сильно ошибиться в расчетах.

Истина где то рядом…

Нашел я в своем архиве проект на монтаж этой распределительной подстанции, откуда запитаны 8 дымососов и стал его изучать.

И наткнулся на следующее. Во всех таблицах технических данных и расчетов фигурировала мощность дымососов (вентиляторов) 630 (кВт), вместо 800 (кВт).

Вот и стало вся понятно. Перепроверил расчет проектантов — он был правильный и соответствовал моим действующим уставкам.

Тогда остается еще одна «маленькая» неясность. Почему проект был расчитан на дымососы 630 (кВт), а фактически установили на 800 (кВт)? И почему после замены мощности дымососов не пересчитали уставки релейной защиты?

Но ответ на эту загадку остался в далеких 1975 годах.

Все что было написано мною в этой статье было предоставлено в виде отчета на стол главного энергетика, изучив весь материал, он своей подписью заверил мой расчет и было отдано распоряжение на изменение уставок на расчетные.

Изменив уставки, проблему частых отключений от токовой защиты во время пуска электродвигателей дымососов (вентиляторов) мы устранили.

P.S. Если во время прочтения материала у Вас возникли вопросы, то задавайте их в форме комментариев. Если Вам есть, чем поделиться и рассказать свою подобную историю, то с радостью Вас послушаем. Не забывайте подписываться на новые статьи с сайта (вверху в правой колонке сайта), чтобы быть в курсе всех событий.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Источник: http://zametkielectrika.ru/raschet-zashhity-elektrodvigatelya/