Измеритель яркости света

Назначение приборов ТКА

Измеритель яркости света

Контроль за освещённостью осуществляется с помощью специальных приборов — люксметров. Люксметры используются для измерения освещённости, создаваемой как искусственными, так и естественными источниками освещения. Единица измерения освещённости – люкс (лк), отражает количество светового потока, падающего на единицу поверхности. В Англии и США освещённость измеряют в фут-свечах (fc) — один люмен на квадратный фут (1 fc = 10,76 лк); в некоторых странах в «фотах» (фот) — один люмен на квадратный сантиметр (1 фот = 10000 лк).

Недостаточное количество света приводит к повышенной утомляемости, снижению работоспособности и негативно влияет на качество зрения. Несмотря на то, что при оценке света учитываются несколько параметров – в том числе сила света и яркость, именно освещенность является ключевым параметром. 

Принцип работы люксметров предельно прост: он основан на работе фотоэлемента, преобразующего световую энергию в электрический ток.  Все люксметры, применяемые для измерения освещённости, обладают небольшим размером и весом.

Люксметры, с помощью которых осуществляется измерение освещённости,  в первую очередь применяются специалистами по охране труда. Обязательный контроль освещённости рабочего места, согласно действующим санитарным правилам, должен проводиться не реже одного раза в год.  Актуально приобрести прибор для измерения освещённости и для домашнего использования.

Выбор люксметра во многом зависит от поставленных перед прибором задач. Наиболее надежный и удобный измеритель освещённости  — люксметр «ТКА-Люкс». Он способен измерить уровень освещения в диапазоне от 1 до 200 000 люкс (ПГ 3,0%). Время непрерывной работы данного прибора составляет не менее 8 часов.

Для использования в музеях, библиотеках и научных центрах подойдет приборный комплекс «ТКА-Хранитель» — приборный комплекс, созданный специально для учреждений культуры и искусства. Помимо функций люксметра, данный аппарат совмещает в себе функции УФ-радиометра, измерителя влажности и температуры воздуха.

При этом его вес составляет всего 430 грамм.

Сегодня купить приборы для измерения освещённости можно напрямую у производителя — ООО ''НТП ''ТКА''. Данное научно-техническое предприятие занимается разработкой и выпуском контрольно-измерительных приборов с 1999 года. Каждый измеритель освещённости, выпущенный НТП ''ТКА'', соответствует государственным стандартам, имеет сертификаты и удобен в эксплуатации.

Измерение яркости

Одна из важнейших характеристик, влияющая на работоспособность человека – яркость света. Данная характеристика равна отношению силы света в конкретном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную оси наблюдения. Единица измерения яркости – кандел на квадратный метр (кд/м2).  Яркость характеризует пространственное и поверхностное распределение светового потока. Для измерения яркости используются специальные приборы – яркомеры.

Измеритель яркости преобразует световой поток, создаваемый естественным или искусственным источником освещения, в непрерывный электрический сигнал, пропорциональный уровню освещенности. Эта информация выводится на табло прибора для измерения яркости в виде цифрового значения.

Прежде всего, измерение яркости необходимо для контроля уровня светового ощущения глаз человека. Недостаточная или избыточная яркость способна вызывать быструю утомляемость, ухудшение зрения и, как следствие, полную или частичную потерю работоспособности.  Современный прибор для измерения яркости необходим для того, чтобы контролировать и своевременно реагировать на изменения данного параметра.

При этом необходимо помнить, что свет, генерируемый источником, должен иметь такое спектральное распределение плотности энергетической яркости, которое обеспечивало бы однозначное присвоение ему того или иного цвета. Необходимость постоянного контроля обусловлена использованием современной техники – ЖК мониторов, телевизоров, ламп дневного света, внедрение светодиодных светильников.

 Для исключения мешающих зеркальных отражений в дисплеях яркость потолочных или встраиваемых светильников хотя бы в: двух основных плоскостях не должна превышать 200 кд/м2.
Ограничение яркости видимых поверхностей светильников – это важный показатель качества освещения, так как именно яркость является той световой величиной, на которую непосредственно реагирует глаз человека.

Превышение предписанных нормами и стандартами величин яркости недопустимо в связи с вероятностью возникновения слепимости.

Измеритель яркости —  прибор первой необходимости в службах охраны труда и обеспечения техники безопасности. Яркомеры широко используются в кинотеатрах, научных центрах, образовательных и медицинских учреждениях, музеях и библиотеках. Все без исключения, они отличаются компактными размерами и небольшим весом.

Яркомеры бывают накладного и проекционного типа. Приборы накладного типа используют для измерения плоских протяжённых самосветящихся объектов. Например, для измерения яркости плоских светильников или мониторов. Конструкция яркомера накладного типа проста. Яркомер проекционного типа имеет оптическую схему, позволяющую вырезать телесный угол обследуемого объекта и спроецировать этот фрагмент объекта фотодатчик.

Читайте также  Светится стартер лампы дневного света

Приборы этого типа  позволяют измерять яркость удалённых объектов (фонарей, потолочных светильников, сигнальных индикаторов) сложной формы, а также отражённую яркость несамосветящихся объектов – стен, экранов кинотеатров, дорожных знаков и других подобных объектов. Очевидно, что сфера применения проекционного яркомера гораздо шире, чем у накладного. Но у него гораздо сложнее конструкция и намного выше цена. При поиске необходимой модели обязательно обращайте внимание на нижний предел чувствительности средства измерения.

Спектральная чувствительность яркомеров в нашем случае нормализована функциями относительной спектральной световой эффективности монохроматического излучения для дневного зрения (L>10 кд/м2).

Выбор прибора, осуществляющего измерение яркости, зависит от поставленных перед ним задач. Например, прибор «ТКА-ПКМ» (09) совмещает в себе функции яркометра (накладным методом), люксметра и пульсметра, и позволяет осуществлять комплексный контроль над всеми параметрами освещения на рабочем месте.

Яркомер «ТКА-Кино» незаменим при монтаже кинопроекторов и оборудования в кинозалах, а спектроколориметр «ТК-ВД»/01 – позволит не только контролировать яркость киноэкранов, но и измерит цветовые характеристики создаваемого цифровыми кинопроекторами изображения (координаты цветности и коррелированную цветовую температуру).

Измерение оптических параметров светодиодов

Применяемые сегодня светодиодные технологии все больше вымещают традиционные виды освещения. Это связано с их характеристиками: высокой вибрационной устойчивостью, простотой обслуживания и длительным сроком эксплуатации. Благодаря достаточной контрастности излучаемого освещения и оптимальной цветовой температуре, светодиоды все чаще используются для общего освещения жилых домов и офисных помещений.

Тем не менее, внедрение передовых технологий освещения в повседневную жизнь требует тщательного контроля оптических параметров светодиодов. Измерение параметровсветодиодов включает в себя измерение светового потока, спектральный анализ освещения и его цветовые характеристики.

Измерения осуществляются при помощи прибора спектроколориметра «ТКА-ВД».

Неоспоримым помошником при расчете энергоэффективности светотехнических приборов может стать спектрофотометр ''ТКА-Спект(ФАР)'', который позволяет произвести измерения плотности фотосинтетического фотонного потока PPFD [мкмоль/с/м²].

Для измерения светового потока светодиодов может использоваться гониометрический метод или метод интегрирующей сферы. Измерение светодиода гониометрическим методом основано на пошаговой фиксации значений силы светового потока, испускаемого источником при его повороте на известный угол. Метод интегрирующей сферы, в свою очередь, позволяет получать такие же данные гораздо быстрее путем выполнения несложных технических операций. В нём световой поток светодиода сопоставляется с заранее вычисленным потоком эталонного источника света (относительное фотометрирование).

Измерение светодиода методом интегрирующей сферы проводится с помощью фотометрического шара, позволяющего получить наиболее точные данные. В соответствии с законом Ламберта, шар рассеивает световой поток равномерно, что позволяет максимально быстро произвести измерение оптических параметров светодиодов.

Именно на основе метода интегрирующей сферы специалистами научно-технического предприятия «ТКА» создан измеритель светового потока «ТКА-КК1». С помощью данного прибора можно максимально точно проводить измерение светодиодов в режиме реального времени.  В нём световой поток светодиода сопоставляется с заранее замеренным потоком эталонного источника света.

Приёмником света является фотодиод, установленный в нижнюю полусферу. В силу этого возможно перейти от относительных измерений к прямым измерениям светового потока в люменах (абсолютное фотометрирование). Небольшие размеры прибора значительно облегчают процесс измерения светового потока одиночных светодиодов.

На начало 2014 года прибор «ТКА-КК1» не имеет прямых отечественных аналогов, а доступная цена делают прибор номером один для измерения светодиодов.

Измерение температуры и влажности воздуха внутри помещений

Современный измеритель влажности, это устройство, которое выполняет точные замеры показателей влажности, необходимые для обеспечения условий работы в строительной, пищевой, нефтегазовой и других промышленностях. В зависимости от области применения прибора, существуют его конструкционные отличия.

Постепенно уходят в прошлое привычные многим измерители температуры на базе ртутных термометров. Современный измеритель температуры – это цифровое устройство, которое имеет ряд преимуществ над своим ртутным предшественником. Во-первых, он не содержит ртути, а, значит, не подпадает под действие различных запретов на использование (в последнее время различные государственные учреждения издают указы, запрещающие использование и транспортировку ртутных измерителей температуры).

И такая тенденция наблюдается в большинстве мировых стран.

Во-вторых, его корпус выполнен из нержавеющей стали, что гарантирует прочность его корпуса намного выше, чем стекло у ртутного. В-третьих, цифровые термометры не требуют предварительной калибровки, отображаемая ими температура соответствует фактической.

В-четвертых, стоимость владения цифровым измерителем температуры значительно ниже стоимости ртутного аналога, ведь при использовании ртутных термометров понадобятся значительные средства на очистку территории после случайного разлива этого опасного металла.

Приборы для измерение температуры и влажности воздуха внутри помещений, выпущенные НТП ''ТКА'', дополнительно отображают вычисляемые в режиме реального времени параметры: температура влажного термометра (tвл, °С) и температура точки росы (tтр, °С).

Относительная влажность воздуха является определяющей характеристикой в деревообрабатывающей, полиграфической и сельскохозяйственной промышленности. При работе с деревом и бумагой в производственных помещения, а также для сохранения сельскохозяйственной продукции на складах надежным помощником является термогигрометр.

Читайте также  Установка датчика света в доме

Он убережет изделия из древесины при очень сухом воздухе или при процессах лакировки. Отрегулирует необходимую температуру воздуха и показатель влажности для хранения бумажных листов. Поможет содержать в целости и сохранности собранный урожай.

Контроль над влажностью воздуха поможет повысить продуктивность животноводства и уменьшить затраты кормов и энергетических ресурсов, а еще обеспечит на фермах благоприятные санитарно-гигиеничные условия.

Нынешнее поколение термогигрометров фирмы НТП ''ТКА'' – это мобильные и компактные устройства, которые одновременно могут обслуживать сразу несколько зданий. Кроме названных выше отраслей промышленности, термогигрометры применяются еще в текстильной (при производстве пряжи и волокон) промышленности, а также в производстве табачных изделий.

В приборах, выпускаемых НТП ''ТКА'', реализована уникальная возможность определения значений ТНС и WBGT индексов в режиме реального времени благодаря одновременному измерению температур воздуха и внутри черного шара, влажности воздуха и вычислению точных значений температуры влажного термометра по специальной программе, защищенной Свидетельством об официальной регистрации программы для ЭВМ. Дополнительное одновременное определение значений средней температуры излучения и плотности потока теплового излучения обеспечивает эффективную и достоверную оценку возможного теплового перегрева при исследовании горячей окружающей среды.

Развивается новая линейка  автономных регистраторов ТКА-ПКЛ, которые предназначены для измерения относительной влажности, температуры и атмосферного давления и записи их во внутреннюю память и дополнительно могут быть снабжены функцией передачи данных как по USB, так и по Wi-Fi, с возможностью объединения нескольких таких устройств в измерительно-информационную  сеть.

Источник: http://www.tkaspb.ru/main/index.php?aux_pages=11

Можно ли измерить освещенность с помощью телефона?

Измеритель яркости света

Работая со светом невозможно развиваться без ежедневного изучения тенденций и новинок рынка. Одним из последних наших открытий стало приложение, благодаря которому с помощь обычного смартфона можно замерять количество света в помещении. Безусловно, с профессиональной точки зрения мы не могли остаться равнодушными к такому вызову. Немецкий Институт Прикладной Светотехники (DIAL GmbH) опубликовали статью, в которой рассматривался именно интересовавший нас вопрос: может ли смартфон стать достойной заменой люксметру?

Люксметр против смартфона: может ли специальное приложение стать альтернативой измерительному прибору?

Если такая замена действительно себя оправдывает, то это стало бы не то чтоб революцией, но, как минимум, очень выгодным предложением. Посудите сами, люксметр — удовольствие недешевое. А вот смартфон есть практически у каждого. И специальные приложения либо бесплатные, или стоят дешево. Поскольку наша компания профессионально работает со светом, идея замера фотометрических параметров с помощью телефона нас умиляет. Но, справедливости и любопытства ради, мы решили провести эксперимент. Цель исследования: сравнение результатов работы соответствующих приложений с показателями нашего штатного люксметра.

Тестируемое оборудование

В нашем эксперименте принимали участие iphone разных серий, а также телефоны Sony, Samsung и Nokiа:

Производитель Операционная система
iPhone5 iOS
iPhone 5S iOS
iPhone 6 iOS
Sony Xperia Z1 Android
Sony Xperia Z2 Android
Samsung Galaxy S5 Android
Nokia Lumia 925 Windows Phone

Программное обеспечение

Мы выбрали следующие приложения (большинство из них бесплатны), и установили их на каждой из систем:

Название Производитель Операционная система Возможность калибровки Цена
Galactica Luxmeter Flint Soft Ltd. iOS нет
LightMeter by whitegoods Whitegoods iOS есть
LuxMeterPro Advanced AM PowerSoftware iOS есть 7,99€
Luxmeter KHTSXR Android есть
Light Meter Pro Mannoun.Net Android есть
Lux Light Meter Geogreenapps Android есть
Sensor List Ryder Donahue Windows Phone есть

Для справки

Контрольное измерение произведено с помощью откалиброванного люксметра PRC Krochmann (Model 106e, специальная модель, класс А).

Используемые источники света

Для теста мы выбрали три различных источника света:

  • галогенная лампа низкого напряжения;
  • компактная люминесцентная лампа (цветовая температура 2700 K);
  • LED (цветовая температура 3000 K).

Чтоб упростить наши исследования, мы решили оставить один источник света — LED.

Условия тестирования

Испытание проходило в помещении без источников дневного или искусственного освещения. На горизонтальной поверхности мы разместили источники света. На них поочередно устанавливалась освещенность 100 лк, 500 лк и 1000 лк. Фотометрическая головка нашего люксметра была расположена перпендикулярно оси светильника. Затем, точно так же, мы размещали смартфоны с установленными приложениями. Фронтальная камера и датчик яркости находились там же, где до этого располагался фотометр.

Такое расположение подходило всем приложениям кроме платного «Luxmeter Pro Advanced», так как оно для измерения освещённости использует свет, отраженный от поверхности. В этом приложении также доступны настройки типов источника света, расстояния до него и т.д.

Некоторые приложения позволяли произвести калибровку, и, если была такая возможность, мы проводили ее в соответствии с инструкциями производителя, а именно на 100 лк.

Результаты

Во время нашего теста мы выяснили, что хотя в некоторых приложениях можно было произвести калибровку до определенного значения, определить его точно было достаточно сложно. Таким образом, или шаг был большим, либо значение в 100 лк вообще не устанавливалось (например, максимальное значение, которое удалось установить на iPhone 5 с LightMeter by whitegoods — 34 лк).

Читайте также  Как перенести выключатель света и розетки пониже?

Часто отклонения от контрольных значений оказывались весьма высокими (до 113% у Samsung Galaxy S5 с приложением «Lux Light Meter» от Geogreenapps). При использовании эталонна 500 лк дисплей смартфона показывал 1,063 лк. Самое низкое отклонение в 3% было на iPhone 5 с «LightMeter by whitegoods». При 500 лк этот смартфон показывал 484 лк. В то же время, мы не можем утверждать, что именно эта комбинация всегда будет приводить к наименьшим возможным отклонениям.

В случае использования значения 100 лк и этого же приложения, отклонение достигало 89%, а устройство показывало 11 лк.

Также мы заметили, что отображаемые значения на устройствах от Sony, Samsung и Nokia были значительно выше эталонных, в то время, как на iPhone существенно ниже. Среднее отклонение во всех приложениях на Android-смартфонах и на телефонах с Windows Phone были приблизительно на 60% выше контрольных. Расхождение значений измеренных различными iPhone было на 60% ниже опорных.

Мы также заметили, что различные приложения, установленные на смартфонах от Samsung и Sony, показывали близкие значения. Скорее всего, в этих устройствах для измерения освещенности используется датчик яркости, а не камера.

В некоторых моделях Samsung можно переключиться в режим инженерного меню с помощью комбинации *#0*#. Выбрав пункт «Датчик света», вы можете узнать предполагаемую освещенность без установки приложения. Так что в этом случае специальная программа может и не понадобиться. Тем не менее, показатели на этих устройствах также отклонились от эталонного значения в рамках 37%-113%.

 

Будут ли совпадать результаты на аналогичных смартфонах с одинаковыми приложениями?

Чтобы проверить это, мы использовали 4 идентичных iPhone 5 с установленными на них приложениями «Galactica Luxmeter» и «LightMeter by whitegoods». К сожалению, нас ждало разочарование. Все четыре смартфона показали совершенно разные показатели.

Мы считаем, что причиной таких колебаний является отличие комплектующих в телефонах. Такие отклонения пользователь не замечает при повседневном использовании, но при непосредственном тестировании они заметны.

Всегда ли есть процентное отклонение от эталонного значения?

Если вы всегда используете смартфон с одним и тем же приложением, вы можете предположить, что можно достаточно точно производить замеры, зная процентное отклонение от эталонного значения. Но всегда ли этот процент одинаковый?

Для того, чтобы проверить это, мы провели измерения освещённости на 10 лк, 100 лк, 1000 лк и 10000 лк с помощью iPhone 5 размещенным на оптической скамье в черной комнате. Увеличение яркости можно очень точно задавать путем регулировки расстояния между источником света и приемником.

В качестве источника излучения снова использовался светодиодный светильник с цветовой температурой 3000 K. В этом тесте мы рассмотрели показатели двух различных приложений. Оказалось, значения разных программ отклоняются друг от друга, в некоторых случаях до 358% (12 лк до 55 лк при эталоне 100 лк). Если рассмотреть процент отклонений от эталонных значений, то никакой закономерности мы не увидим.

При использовании приложения «Galactica Luxmeter» значения были выше контрольных на 180% при 10 лк и на 50% ниже эталонных значений при 10 000 лк. «LightMeter by whitegoods» было откалиброванным на 10 лк. При опорных 100 лк отклонение составило 88% в меньшую сторону, а при 10 000 лк — 59%. Значения всех остальных приложений были так же существенно ниже контрольных, а сам процент отклонений все время менялся.

К тому же, мы обнаружили, что измерения, проведенные с помощью передней и задней камеры показывают различные значения. К тому же, некоторые приложения никогда не показывают 0 лк, даже если на камеру свет не попадает и она закрыта «заглушкой».

Заключение

Результаты доказывают, что серьезные измерения освещенности возможны только с помощью профессионального оборудования. Оно оснащено откалиброванным датчиком, гарантирующим, что оценка освещенности будет проведена в соответствии с чувствительностью человеческого глаза при дневном свете. Кроме того, приборы позволяют измерить количество света в зависимости от угла падения луча. Смартфоны не могут сделать ни того, ни другого, в противном случае они не смогут выполнять свои функции как телефон.

Разработчики приложений не утверждают, что смартфоны могут заменить профессиональные приборы. Утверждение, что некоторые приборы позволяют провести калибровку звучит эффектно, но, к сожалению, технически почти невозможно установить нужное значение. Даже при использовании одного и того же приложения на идентичных смартфонах результаты оценки отличаются.

Поэтому, к сожалению, приложения на самом деле не слишком помогают, даже в том, чтобы получить общее представление об освещенности. Более того, результат может оказаться кардинально противоположным и ввести пользователя в заблуждение.

Поэтому, если вам действительно понадобится измерить освещенность, воспользуйтесь люксметром, а телефон оставьте для звонков любимым.

Источник: https://www.prof-led.ru/news/mozhno_li_izmerit_osveshchennost_s_pomoshchyu_telefona/