Искрение в плохом соединении

Почему искрят контакты и как это устранить

Искрение в плохом соединении
Одной из основных неисправностей коммутационных приборов является искрение контактов или их полное отсутствие. Основной причиной возникновения этой проблемы является износ контактной системы или выход из строя других узлов аппарата. Если ничего с этим не делать — в результате придется полностью заменить выключатель, реле или другое переключающее устройство. К тому же искры и нагрев могут привести к возгоранию. Но давайте рассмотрим подробнее причины искрения контактов и способы их устранения.

Причины возникновения искр и дуги

Прежде чем рассмотреть, почему искрят контакты, разберемся в основных понятиях. Коммутационный аппарат и его контактная система должны обеспечивать надежное соединение с возможностью его разрыва в любой момент. Контакты состоят из двух электрических пластин, которые в замкнутом положении должны быть надежно прижаты друг к другу.

Дуга возникает при коммутации индуктивных цепей. К таким относятся различные электродвигатели и соленоиды, но стоит помнить, что даже прямой отрезок провода имеет определенную индуктивность, и чем он длиннее — тем она больше. При этом, ток в индуктивности моментально прекратится не может — это описано в законах коммутации. Поэтому на выводах индуктивной нагрузки образуется ЭДС самоиндукции, её величина описывается формулой:

E=L*dI/dt

Интересно! В нашем случае важную роль играет скорость изменения тока. При отключении она крайне велика, соответственно ЭДС будет стремиться к большим значениям, вплоть до десятков киловольт (например система зажигания автомобиля).

В результате ЭДС возрастает до такой степени, что его величина пробивает промежуток между контактами — образуется электрическая дуга или искры. Качество любых соединений описывается их переходным сопротивлением: чем меньше — тем лучше соединение и тем меньше нагрев. При их размыкании оно резко возрастает и стремится к бесконечности. В этот же момент происходит разогрев площади их соприкосновения.

Кроме того, между разомкнутыми контактами на фоне возрастающего ЭДС самоиндукции и повышенной температуры воздуха из-за разогрева поверхностей при размыкании пластин происходит и ионизация воздуха. В результате присутствуют все условия для возникновения дуги и искрения.

Если говорить о том, почему искрят контакты при замыкании электрической цепи, то это происходит уже не при индуктивной, а при емкостной нагрузке. Вы наблюдаете это каждый раз, когда вставляете в розетку зарядное устройство от ноутбука или телефона. Дело в том, что разряженная емкость (конденсатор) на входе устройства в начальный момент времени представляет короткозамкнутый участок цепи, ток которого уменьшается по мере её заряда.

Если вы наблюдаете искрение в реле или выключателе в замкнутом положении — причиной этому служит плохое состояние контактных поверхностей и их высокое переходное сопротивление.

Последствия искрения

Из-за искрения с контактов испаряется метал, происходит их нагрев и повышения переходного сопротивления. Последнее вызывает еще большее их обгорание, после чего они еще сильнее искрят. Последствия этих процессов могут привести к частичному или полному отсутствию способности к коммутации у прибора, вплоть до его залипания или возгорания при определенных обстоятельствах. Нужно следить за состоянием всех соединений и подвижных переключающих элементов.

Способы устранения и предотвращения явления

Для устранения искрения контактов решения принимаются еще на стадии разработки коммутационных аппаратов. Например, расстояние между ними увеличивается, устанавливают камеры дугогашения для охлаждения дуги.

Также делают напайки из драгоценных неокисляющихся материалов, таких как серебро, например, на поверхности через которые проходит ток.

На быстродействующих реле искрение образуется при размыкании, в том числе потому, что их контакты в разомкнутом положении находятся близко друг к другу. Значит нужно снизить нагрузку, использовав промежуточные реле или использовать искрогасящие цепочки, их схемы мы рассмотрим дальше.

Разберемся что делать, если искрят контакты на имеющемся автомате или пускателе. В первую очередь качественное соединение обеспечивается сильным прижатием пластин, при искрении стоит проверить нормально ли соприкасаются контактные площадки. В автоматах типа АП они прижимаются пружинящим механизмом, для проверки нужно при отключенном напряжении, но замкнутых контактах отвести назад подвижную пластину и отпустить, он должен резко с характерным щелчком удариться о неподвижную пластину. То же самое можно провести на магнитном пускателе.

Если вы убедились в качественном нажиме, но контакты все равно искрят — проверьте нет ли нагара на их поверхности в точках соприкосновения. Если нагар есть, то его счищают максимально возможной мелкой наждачной бумагой, деревянной частью спички или ластиком, но ни в коем случае не надфилем — поверхности должны быть максимально гладкими, иначе возрастёт переходное сопротивление.

Еще одним методом решения проблемы, связанной с искрением, является установка искрогасительных цепей. Если искрят реле и пускатели в цепи постоянного тока, то параллельно нагрузке устанавливают диод, подключенный катодом к положительному, а анодом к отрицательному полюсу. Таким образом энергия, накопленная в индуктивности и её ЭДС самоиндукции рассеивается на активной части нагрузки, а диод замыкает контур для протекания тока.

А если искрят контакты в цепи переменного тока, можно установить искрогасительную RC цепь, её иногда называют шунтирующей, а в электронике – снабберной. Она выполняет роль защиты за счёт того, что энергия, накопленная в индуктивностях, стремится рассеяться не на коммутационном аппарате, а на активном сопротивлении этой цепи.

Ёмкость рассчитывают по формуле:

Сш=I2/10

Резистор:

Rш = Ео / (10 * I * (1 + 50 / Ео))

Но быстрее и проще пользоваться номограммой:

Более подробной данный вопрос также рассмотрен на видео:

Источник: https://samelectrik.ru/pochemu-iskryat-kontakty.html

Защита от искрения и дуги — УЗИС, AFDD. Виды, принцип действия, правила и ГОСТ для них

Искрение в плохом соединении

На сегодняшний день для защиты электропроводки в наших домах и квартирах достаточно всем привычных автоматических выключателей, УЗО или дифф.автоматов.

Однако в недалеком будущем к ним могут добавиться еще одни устройства, пока малознакомые рядовому потребителю, но все более активно внедряющиеся в нашу жизнь, как на добровольном уровне, так и на законодательном. По крайней мере нормативно правовая база идет именно в этом направлении (ГОСТ Р50571.4.42-2017).

По простому их называют искрозащитные или защитные устройства от дуги. Пока их установка всего лишь рекомендация, но в ближайшие годы все может резко измениться. Подобное было и на первоначальных этапах внедрения УЗО.
Сокращенных названий у данных девайсов множество:

  • УЗИС — устройство защиты от искрения
  • AFDD — так его называют в Западных странах
  • AFCI — аббревиатура применяемая в США
  • УЗДП — устройство защиты от дугового пробоя

Какое из названий более верное? Согласно ГОСТ IEC 62606-2016 правильнее будет называть его УЗДП, хотя в народе больше прижилось самое первое — УЗИС.

Давайте поподробнее разберемся что же это такое и для чего они вообще нужны.

Данные устройства фиксируют наличие искры в проводке и обесточивают ее. Основная причина пожара в домах это не какая-то утечка тока, от которой призваны защищать противопожарные УЗО ( с током утечки 100-300мА) и даже не короткие замыкания.

Если монтаж электрики выполнен правильно, верно подобрано сечение и номинал автомата, то риск возникновения и распространения огня минимален. 

Чаще всего пожары случаются из-за искрящей проводки или дуги возникающей при плохом контакте.

Можно перечислить 9 основных причин этих явлений:

  • механическое повреждение кабеля
  • ослабленный контакт, появляющийся не только по истечении долгого времени эксплуатации, но и по причине применения неправильного инструмента
  • повреждение грызунами скрытой проводки за полыми стенами из-за отсутствия защиты гофрорукавом
  • повреждение наружной изоляции и отсутствие элементарной защиты в виде изоленты или термотрубки
  • старение изоляции, которое своевременно выявляется специальными приборами
  • заводской дефект кабеля, изготовленного не по ГОСТу
  • неполноценный контакт (из-за плохой розетки или несоответствующей вилки)
  • скрутка меди и алюминия

Более того, искрение может возникнуть даже на казалось бы цельном проводе или кабеле. Достаточно было при монтаже сделать слишком крутой изгиб или случайно поставить на него что-то тяжелое.

В принципе об этих проблемах и причинах знали достаточно давно, но технологии не существовало до конца 90-х годов. Впервые они были применены в электросетях США и Западных странах. 

Наиболее широкое распространение они получили в деревянных домах каркасного типа, где все провода без всяких гофр и труб открыто прокладываются сквозь горючие перегородки. 

Читайте также  Как выполняется соединение звездой?

Безусловно, такая защита не панацея и не спасет например от элементарного нагрева контактов. Если у вас вилка не искрит в розетке, а всего лишь греется, или окислился контакт в месте соединения медной проводки с алюминиевой, что также приводит к нагреву, то пожара не избежать и дугозащитные устройства здесь не помогут.

Хотя опять же за рубежом, уже постепенно начинают внедрять розетки со встроенной термической защитой. При перегреве они автоматически отключаются.

Правда такие розетки еще нигде, даже в США не обязательны для монтажа и устанавливаются на добровольных началах.

Каким же образом искрозащитное устройство, которое стоит в электрощитке на входе в дом, видит искрение провода в самой дальней розетке спальни или зала? Какая магия здесь используется?

Конечно же магии тут никакой нет, все основано на законах физики. Аппарат главным образом следит за спектром тока проходящего через него.

Когда в цепи электропроводки в любом месте начинается искрение, во первых искажается синусоида и она становится рваной. Сила тока и напряжение начинают скачкообразно изменяться. Возникают помехи.

Однако если бы защита была отстроена на отслеживание только этих параметров, было бы очень много ложных срабатываний. Именно этим грешили самые первые экземпляры.

Поэтому последние качественные УЗИС или УЗДП анализируют массу параметров:

  • и темп следования скачков

Производителям аппаратов защиты от искрения  и дуги, предписаны стандартом ГОСТ следующие три главные задачи:

  • проанализировать ток, и при этом убедиться что его источник именно дуга, а не полезная нагрузка
  • выяснить насколько опасна эта дуга по ее мощности

Ведь простое включение вилки в розетку также вызывает искрение. Но при этом ничего отключаться не должно.

  • если первые две задачи успешно решены и ток выявлен, то его нужно успеть разорвать в заданное время

При всем при этом, ГОСТ не определяет как именно это сделать. Каждый производитель решает задачу по своему и оформляет соответствующие патенты.

  • Меандр УЗМ 51МД
  • AFDD Eaton
  • УЗИс-С1-40 Эколайт
  • Siemens 5SM AFD
  • ABB S-ARC1
  • Hager

Только при наложении в совокупности всех факторов, защитный аппарат определяет что в цепи появилась дуга и отключает ее.

Если импульсы в сети меньше заданной амплитуды, то это считается не опасным и прибор не реагирует.

В релюшках напряжения можно подкрутить срабатывание как по верхней границе, так и по нижней. Здесь же все параметры задаются на заводе изготовителе.

Безусловно, у самых первых подобных экземпляров все еще встречаются погрешности и ложные срабатывания. Технологию нельзя назвать до конца отработанной.

Однако большинство грубых ошибок уже исключены. Например обыкновенный пылесос, блендер или дрель, при включении могут породить похожую на дугу определенную волновую характеристику. Также дуга возникает при электророзжиге плиты.

Любой щеточный электроинструмент искрит, в особенности если его щетки уже достаточно выработались. Не говоря уже про начальный бросок пускового тока.

Производители учитывают все эти рабочие моменты и ложных срабатываний у качественных моделей становится все меньше и меньше.

Как быстро должны срабатывать такие устройства обнаружения дугового разряда? Зависит здесь все от напряжения и номинала тока дуги.

Вот таблица всех значений:

Допустим устройство у вас сработало и все отключилось. Как найти место где возникла дуга и появились искры? Если у вас двухэтажный особняк с полсотней розеток, куда бежать в первую очередь и как узнать эту очередность?

Тут вам поможет ваш электрощиток. Чем больше в нем будет групп и автоматов, тем лучше. 

Каждый автомат отвечает за определенную комнату или зону в доме. Отключаете их все скопом, после чего включаете УЗДП.

Далее по одному начинаете включать автоматические выключатели. Причем после включения каждого автомата выжидаете минимум по 10 секунд и только потом переходите к другому.

Имейте в виду, что в цепи должны быть подключены все приборы, которые работали до этого. Кроме того, они должны быть под нагрузкой, а не на холостом ходу. Иначе при токе до 2,5А устройство защиты от дуги может не сработать.

При включении дефектной линии дугозащита должна вновь отключить ее. Тем самым, вы определите проблемную зону или группу. Допустим это кухня. 

Отправляете туда жену, чтобы она наблюдала, а вы тем временем вновь запускаете автомат. Визуально или по звуку можно будет установить место искрения.

А если все равно ничего не видно и не слышно? Тогда действуйте следующим образом. Начните поочередно выключать из розеток все приборы на этой линии.

Если УЗИС все равно срабатывает, то причина в самой проводке, а если нет, то виноват какой-то из отключенных приборов или конкретная розетка.

Включите в эту розетку другой прибор и посмотрите что изменится.

1Какое правильное название у этой защиты от искрения и дуги?

По ГОСТу правильное определение и сокращенное название это УЗДП — устройство защиты при дуговом пробое. Поэтому в первую очередь она спасает именно от дуги, а не от искрения.

Термин «искрение» здесь означает повторяющийся дуговой пробой.

2Заменяют ли УЗДП-УЗИС автоматы и противопожарные УЗО?

Нет, не заменяют. Они представляют из себя третий этап развития защит и устанавливаются в цепь после автоматов и УЗО, а не вместо них.

Зато отдельные УЗДП отечественных марок могут полноценно заменить реле напряжения. Также в США и на Западе выпускают модели AFCI 3 в 1.

Они имеют в своем корпусе и автомат, и УЗО, и дугозащиту. Такое объединение с одной стороны вроде бы и хорошая оптимизация, но с другой имеет ряд недостатков:

  • непросто определить какая из защит сработала в том или ином случае
  • если AFDD сгорит, то вы лишитесь сразу всей защиты

А при выходе из строя только УЗИС, у вас останутся в «голове» и автомат, и УЗО.

  • при повреждении любой функции в AFDD по отдельности (автомат-УЗО-УЗДП) вам придется менять его целиком, что больно ударит по кошельку

Главное преимущество таких AFDD это компактность и простота схемы подключения. Не нужно в щитке коммутировать кучу проводов и наконечников, достаточно подключить всего один девайс.

3Каким нормативам и стандартам подчиняются устройства защиты от дуги?

В России это межгосударственный стандарт ГОСТ IEC 62606-2016 «Устройства защиты бытового и аналогичного значения при дуговом пробое. Общие требования.» (скачать)

Стандарт на их применение — ГОСТ Р50571.4.42-2017 (скачать).

4УЗДП ставятся на каждую линию по отдельности или одно на вводе?

Устройство можно устанавливать как отдельно по группам, так и в одном экземпляре сразу на весь электрощит. Здесь есть как плюсы, так и минусы: 

Среднестатистическая площадь квартиры для защиты одним аппаратом, если исходить из разветвленности проводки — 120-150м2.

Например разработчики УЗИс-С1-40 реально проверяли срабатывание на одиночном проводе длиной до 80м. При этом в цепи присутствовала нагрузка ослабляющая сигнал — телевизор, компьютер.

В итоге аппарат отработал штатно. По ГОСТу же испытания проводят на кабелях длиной максимум до 30м.

5Почему у некоторых моделей питание заводится сверху, а у других снизу. Как правильно?

Все зависит от производителя и его линейки сборки. У моделей с нижним подключением это связано с конструкцией расцепителя. Например у того же УЗИс-С1, при его переворачивании пришлось бы рукоятку включения также развернуть на 180 градусов.

И тогда язычок во включенном состоянии смотрел бы вниз, что запрещено правилами. Кстати у зарубежных известных марок Siemens, Eaton вход также сделан снизу.

6Есть ли в девайсе защита от импульсных скачков?

Да, большинство моделей имеют такую встроенную защиту в виде варистора.

Однако они все равно не могут в полной мере заменить полноценные УЗИП. 

7Защищает и отключается ли УЗИС от искрения на вводом автомате или счетчике, то есть до точки своего подключения?

Нет, не отключается и не срабатывает.

По крайней мере нормально отстроенная защита без ложных срабатываний, на это реагировать не должна.

Она отстроена так, чтобы искать повреждения только в защищаемой цепи, а не до нее.

Источник: https://domikelectrica.ru/zashhita-ot-iskreniya-i-dugi-uzis-afdd/

Почему искрят контакты и как это устранить?

Искрение в плохом соединении

Практически все электромеханические коммутирующие устройства со временем начинают сильно искрить. Как вы уже догадались – это искрят контакты, замыкающие и размыкающие различные цепи. Строго говоря, искрение обычных контактов происходит всегда, но оно незначительно. Проблемы начинаются с того момента, когда искрообразование нарушает нормальный режим работы электроприбора, а в области рабочего пространства коммутационного узла ощущается запах озона и гари.

Основные причины искрения

Чтобы ответить на вопрос, почему и при каких обстоятельствах возникает электрическая искра, выясним, какие процессы лежат в основе искрообразования. Собственно говоря, их немного – всего два:

  1. Дребезг контактов.
  2. Влияние индуктивных цепей при их коммутации.

Существует ещё несколько факторов усиливающих процесс искрения. Это износ, превышение значений токов коммутации, ослабление пружин или уменьшение упругости пластин и некоторые другие.

Читайте также  Гребенка для соединения автоматов в щитке

Для лучшего понимания причин искрения рассмотрим более детально физику процесса. Начнём с понятия искры.

Из школьного курса физики известно, что между проводниками, на которых образовались электрические заряды, происходит ионизация воздушного пространства. По нему в определённый момент протекает ток. Если поддерживать разницу потенциалов на определённом уровне, то образуется электрическая дуга, с огромным тепловым излучением. Примером может служить работа сварочного аппарата.

Известно, что заданным током электрическую дугу можно зажечь лишь на определённом расстоянии между электродами. Чем больше разница потенциалов, тем больший промежуток, на котором происходит образование дугового электротока.

Искра – это частный случай кратковременной электрической дуги. Для этого явления справедливы утверждения приведённые выше. Отсюда вывод – для недопущения процесса искрообразования необходимо устранить причины, вызывающие зажигание электрической дуги. В частности, при разомкнутом или замкнутом положении контактов искрение прекращается по причине исчезновения условий для существования тока в ионизированном пространстве.

А теперь остановимся вкратце на процессах, вызывающих искрение в коммутационных устройствах.

Дребезг контактов

Когда катушка реле замыкает электрическую цепь или разрывает контакт, он под действием упругих сил несколько раз отскакивает. В определённые моменты расстояние между контактами оказывается настолько маленькое, что создаются условия для электрического пробоя. Поскольку процесс дребезга длится лишь доли секунды, то образуется именно искра, которая исчезает в положении замкнутого контакта. Искрение прекращается также в том случае, когда цепи полностью разомкнуты.

Влияние индуктивных цепей

При коммутации электродвигателей и различных соленоидов на выводах индуктивной нагрузки происходит образование ЭДС самоиндукции: E = -L*di/dt.

Из формулы видно, что ЭДС пропорциональна скорости изменения силы тока. Поэтому, при мгновенном расхождении контактов её величина резко возрастает. Кроме того, на ЭДС самоиндукции влияет индуктивность коммутируемого устройства. В частности, такой принцип коммутации использовался в старых моделях автомобилей. Контакты прерывателя с огромной скоростью разрывали цепь катушки индуктивности, в результате чего на электродах свечей зажигания напряжение достигало десятки киловольт.

В нашем случае напряжение разрыва, конечно же, значительно меньше, однако его вполне достаточно для образования искры. Заметим, что определённой индуктивностью обладают даже обычные провода. Поэтому искрение возможно при отключении нагрузки, находящейся в конце длинных линейных цепей.

Прочие причины искрения

Выше упоминалось о том, что усилить искрение могут различные факторы, связанные с эксплуатацией коммутационных устройств. В данном разделе мы рассмотрим, что происходит под действием некоторых факторов:

  1. При плохом контакте увеличивается продолжительность дребезга, что является причиной усиления искрения.
  2. Если ток коммутации сильно отличается от номинального (в большую сторону) то, во-первых, греются контакты, а во-вторых – искра получается более мощной и разрушительной.
  3. Когда ослабление упругости пластин коммутационной системы не обеспечивает надёжного замыкания, то это ведёт к подгоранию контактов, образованию налёта и сажи, увеличивающих процесс искрообразования.

Заметим, что в электродвигателях постоянного тока искрят щетки. В оптимальном режиме работы мотора искрение незначительное. Но при перегрузках или в случаях междувитковых замыканий происходит значительное искрообразование, разрушающее коллектор. Похожее явление происходит при плохом прижимании щёток или в результате засорения промежутков между пластинами коллектора.

На рисунке 1 изображен якорь с подгоревшим коллектором.

Рис. 1. Подгоревший коллектор

Искрение наблюдается, когда вставляют в розетку вилки шнуров, во время подключения мощных электроприборов. Явление усиливается, если штырьки штепселя не соответствуют гнезду розетки.

Последствия, к которым приводят плохая коммутация в розетке, показаны на рис.2.

Рис. 2. Последствия плохой коммутации

Последствия

Искрение контактов не проходит бесследно. Возникают побочные следствия, сокращающие срок службы коммутирующих устройств:

  • выгорают контакты;
  • ослабляются упругие пластины, контактной группы;
  • перегреваются реле и розетки;
  • при наличии мощного тока отключения искра может стать причиной пожара, вызвать ожоги у обслуживающего персонала.

Пригоревшие контакты могут залипать, вследствие чего нарушается работа электрооборудования. Если такая неприятность случится в защитных коммутирующих устройствах, это может привести к непредсказуемым ситуациям.

Способы устранения

Выяснив причины искрения, вы можете выбрать действенный способ устранения неполадки. Например, если плохо соединяются контакты, это может быть признаком их засорения сажей. Необходимо удалить весь нагар, используя растворители. Обычно протирают контакты ваткой, пропитанной спиртом. В качестве растворителя подойдёт обычная водка или одеколон.

Изначально поверхность контактов делают очень гладкой для лучшего прижатия их друг к другу. Но в процессе эксплуатации искрение разрушает напыление, вследствие чего появляются шероховатости. Для восстановления работоспособности достаточно отшлифовать поверхность нулёвкой. Если покрытие серебряное – лучше использовать деревянную пластинку, а когда контакт сгорел, то он подлежит замене.

Возможна ситуация, когда искрит замкнутый контакт. Причиной может быть сильное его выгорание или потеря упругости пластины, которая разрывает контакт. Можно попытаться временно восстановить работоспособность реле путём шлифования или попытаться восстановить изгиб пластин.

Мы рассмотрели примеры устранения последствий искрения. Но существует ряд эффективных способов борьбы с причиной этого явления. Остановимся на некоторых из них:

  1. Применение неокисляющихся металлов – серебра и различных сплавов.
  2. Покрытие контактов ртутью (при условии, что они находятся в закрытой камере, например, контакты манометра).
  3. Использование схем для шунтирования.
  4. Встраивание в конструкции коммутирующих аппаратов искрогасительных RC цепей.

Метод с применением схем для подавления искрения довольно эффективен и не дорогой. При желании каждый, хоть немного разбирающийся в электротехнике человек, может самостоятельно изготовить искрогасящую цепь.

Для гашения искрообразования в индуктивных цепях постоянного тока достаточно установить диод параллельно нагрузке. При этом катод диода необходимо подключить к положительному, а анод соединить с отрицательным полюсом.

На рисунке 3 изображены схемы, объясняющие действие шунтирующего диода. Обратите внимание на то, как индукционный ток рассеивается на диоде, не попадая на коммутационное реле (позиция С).

Рис. 3. Схемы объясняющие действие шунтирующего диода

Для переменного тока устанавливают шунтирующую искрогасительную RC цепь. Накопленная энергия рассеивается на переходном сопротивлении, а не на контактах. Ёмкость шунтирующего конденсатора можно вычислить по формуле: Cш = I2/10, здесь I — рабочий ток нагрузки, а 10 – условная постоянная, позволяющая производить расчёты для простых схем RC цепей.

Сопротивление резистора находим [ 1 ]: Rш = E0 / (10*I*(1 + 50/E0)), где E0 –  ЭДС (напряжение) источника питания, I – сила рабочего тока нагрузки, цифра 50 –стандартная частота переменного ток в электросети. Также пользуются для подбора параметров номограммой ниже.

По известным значениям напряжения источника питания U и тока нагрузки I находят две точки на номограмме, после чего между точками проводится прямая линия, показывающая искомое значение сопротивления резистора R. Значение емкости С отсчитывается по шкале рядом со шкалой тока I. Номограмма дает разработчику достаточно точные данные, при практической реализации схемы необходимо будет подобрать ближайшие стандартные значения для резистора и конденсатора RC-цепи.

Рис. 4. Номограмма

Сама типовая схема искрогасительной RC цепи изображена на рисунке 5.

Рис. 5. Схема искрогасительной RC цепи

Защита контактов от искрения – лучший способ продлить срок службы коммутирующего устройства. Применив несложную схему можно успешно решить задачу, связанную с искрением.

по теме

Источник: https://www.asutpp.ru/iskryat-kontakty.html

Искрение в плохом соединении

Искрение в плохом соединении

Искрящая розетка – явление неприятное и опасное. Обнаружив в розетке искрение, выясните его причины и обязательно устраните возникшую неисправность.

Чем опасно искрение розетки

В момент, когда вилка провода от электрического прибора входит в розетку, происходит взаимодействие их металлических контактов.

Если в силу ряда причин контакт между соприкасающимися деталями недостаточно надежный, через воздушную прослойку в месте их соприкосновения возникает электрический пробой.

В результате ток протекает не напрямую от одного металлического проводника к другому, а посредством электрической дуги, представляющей собой ионизированный поток газов.

Чем выше напряжение в сети и мощность подключенного электрического прибора, тем более сильным будет процесс ионизации, а значит и искрить розетка будет сильнее.

Из-за того, что температура электрической дуги достигает нескольких тысяч градусов, искрение не только способно расплавить розетку и вилку, но и стать причиной пожара.

На начальных стадиях визуально обнаружить искрение сложно, его можно заметить только в темноте, зато его характерный сухой треск гарантированно услышит каждый.

В первую очередь удостоверьтесь в том, что искрит именно электрическая розетка, а не вилка включенного в нее устройства. Как это сделать?

Подключите прибор к другой розетке, третьей, четвертой. Если искрит только одна розетка, причина неисправности кроется именно в ней.

Если же искрение присутствует во всех розетках, с высокой долей вероятности можно утверждать, что причиной искрообразования является именно вилка электрического прибора.

Очистив контактные штыри вилки от слоя окиси и грязи, снова вставьте вилку в розетку. Если искры все равно есть, исправить ситуацию можно только заменой вилки или соединительного шнура вместе с вилкой (если она неразборная).

Еще одной причиной образования искры может быть сам прибор, включенный в розетку.

Дело в том, что при включении в розетку вилки шнура питания прибора, у которого отсутствует кнопка включения/выключения или же она находится в положении «Вкл/On», на входном питающем шнуре будет содержаться некоторое сопротивление, сформированное элементами «начинки» прибора.

Читайте также  Барьерные клеммники для соединения проводов

При включении такого прибора в исправную розетку через исправную вилку, в момент соприкосновения токонесущих частей между ними все равно будет проскакивать искра.

Чтобы избежать образования электрической дуги, перед включением бытового прибора в розетку убедитесь в том, что его выключатель находится в положении «выключено», а устройства, не имеющие таких выключателей, запитывайте через сетевой фильтр-удлинитель, оборудованный кнопкой включения/выключения.

Плохой контакт между токонесущими элементами

Чаще всего розетки искрят из-за плохого соединения между штырями электрической вилки и контактами разъема розетки. Нередко причиной искрения является ослабление крепления жил электрического кабеля с клеммами розетки.

Чтобы устранить указанные неисправности, в первую очередь обесточьте помещение и убедитесь в отсутствии питания на розетке.

Выкрутив болтик, снимите с розетки крышку. Внимательно изучите состояние контактов. Если на них имеются следы окиси или подгораний, удалите их при помощи надфиля или наждачной бумаги.

Проверьте, насколько туго вилка электрического прибора входит в розетку и, при необходимости, подогните контакты розетки друг к другу.

Убедитесь в том, что жилы электрического кабеля надежно закреплены на клеммах розетки, несильно пошатав их из стороны в сторону. Подтяните отверткой винтовое соединение каждой клеммы.

Еще одна причина плохого контакта — использование электрических вилок старого «советского» стандарта с толщиной контактных штырей 4 мм.

Если такую вилку вставить в розетку, рассчитанную на работу с современными вилками Shuko, у которых диаметр электродов составляет 4,8 мм, электрический контакт между соприкасающимися элементами будет настолько слабым, что розетка станет искрить даже при незначительной нагрузке.

Перегруженность розетки

Причиной искрения розетки может быть и ее перегруженность. Если через розетку проходят токи, значение которых превышает номинальное, происходит нагревание контактов.

Точки соединения проводников окисляются и подгорают, надежность контакта снижается, провоцируя искрообразование.

Именно по этой причине категорически не рекомендуется включать в розетку через тройник несколько мощных потребителей энергии.

Надпись «16 А» на корпусе розетки указывает,что она рассчитана на работу с электрическим током, сила которого не превышает 16 ампер.

Проведя несложные вычисления и умножив 16 ампер на 220 вольт, можно получить значение предельной мощности приборов, одновременно подключенных к розетке. В конкретном случае она составляет около 3,5 киловатт.

При использовании двойной розетки знайте, что указанное на ней значение токового номинала, относится не к каждой из ее секций, а ко всему устройству. В этом случае номинальный ток для одной секции будет составлять 8 ампер, а допустимая мощность потребителей энергии – около 1,7 киловатт.

Обнаружив первые тревожные симптомы неисправностей электрической розетки, безотлагательно займитесь их устранением. Своевременно выполненный ремонт не только продлит срок службы розетки и включенных в нее электрических приборов. Он убережет ваш дом от пожара, сохранит ваше здоровье, а то и жизнь.

Удачи вам! Пусть у вас все получится!

Источник: https://goodmaster.com.ua/dom-i-kvartira/kak-izbavitsya-ot-iskreniya-rozetki.html

Почему искрит розетка ?

Если у вас искрит розетка, например, при подключении электрической вилки или в процессе работы электроприбора или даже сама по себе – это признак серьезной неисправности, который необходимо оперативно устранить, иначе могут случиться непоправимые последствия.

Нередко, вы можете даже не видеть искрения, чаще, особенно на начальных стадиях, оно заметно лишь в темноте, но вы обязательно услышите характерные звуки, обычно их описывают как «электрический треск».

Давайте разберемся по-порядку:

1. Почему искрит розетка

2. Какие основные причины приводят в возникновению искр

3. Чем опасно искрение

4. Как выявить причину искрящей розетки и устранить её

Чаще всего, искрение в розетке, это разряды, возникающие при протекании электрического тока не напрямую из проводника в проводник, а через газ, воздушную прослойку между проводниками.

Розетка искрит из-за плохого механического контакта между токопроводящими частями электросети.

Обычно розетки искрят в двух случаях:

1. При плохом соединении жил вводного электрического кабеля с клеммами механизма розетки

2. При плохом соединении контактов разъема розетки со штырьками электрической вилки

Как вы понимаете, искрение может возникать не только в электрической розетке, любое ненадежное соединение проводников может начать искрить. Кстати, это одна из основных причин небольшого количества разрешенных способов соединения проводов в распределительных коробках при электромонтаже.

Основные причины искрения розетки

Причин, по которым искрит розетка не так уж и много, среди них:

1. Чаще всего именно ослабшее соединение является причиной искрения. В большей части современных розеток, для подключения проводов вводного электрического кабеля используются винтовые клеммы, которые, по регламенту, необходимо периодически подтягивать, иначе, оголенный провод, перестаёт плотно прилегать к контактам и возникает искрение.

2. При нарушении режима работы розетки, когда через неё проходят токи, на которые она не рассчитана, розетка сильно греется. При этом, точка соединения проводников может подгорать, окисляться и т.п. и надежность контакта падает. Например, такое случается при одновременном подключении нескольких мощных потребителей к розетке через тройник.

Некачественные разъемы в розетках могут со временем ослабевать и неплотно обхватывать штыри электрической вилки. Кроме того, при их изготовлении могли быть использованные некачественные сплавы, которые со временем ослабляются или окисляются.

3. Некачественная или нестандартная электрическая вилка. Нередко штыри электрической вилки бывают меньше по размеру, чем должны быть или же они выполнены из некачественного, неподходящего сплава, что со временем или сразу приводит к искрению.

Но чем нам грозит такое искрение, опасно ли оно вообще или это просто дополнительный «эффект» работы электроприбора, давайте разберёмся вместе.

Как выявить и устранить причину искрения розетки

Чтобы узнать, почему у вас искрит розетка, есть простой алгоритм действий, последовательно выполняя которые, вы обязательно устраните основную причину неисправности.

1. Если розетка искрит при включении в неё электрической штепсельной вилки, то в первую очередь проверяем вилку электроприбора, включая её в другие, соседние розетки. Если искрение продолжается и в других розетках, а другие приборы при этом работают нормально, то, скорее всего, дело в вилке.

Попробуйте очистить контактные штыри вилки от загрязнений, окислений и т.д. и проверить её снова, если это не помогло, то необходимо заменить вилку.

2. Если при проверке оказалось, что вилка в других розетках не искрит, то переходим к ремонту розетки.

Внимание! Любые работы связанные с ремонтом розетки, необходимо производить  только при полностью обесточенной сети. Для этого необходимо выключить в электрическом щите защитный автоматический выключатель, этой розеточной группы, после чего обязательно еще раз убедиться в отсутствии напряжения в месте монтажа.

Чтобы починить розетку, если она искрит, необходимо почистить от окисления и нагара, а также немного подогнуть друг к другу контактные «губки» разъема.

3. После чего, обязательно проверяем  надежность закрепления проводов электрического кабеля в клеммах розетки и подтягиваем винты. Лучше всего предварительно достать каждый провод, посмотреть на состояние токопроводящей жилы, они так же могли подгореть или окислится, и требуют очистки.

Чаще всего, этих действий бывает достаточно для того, чтобы розетка перестала искрить и нормально функционировала. Но бывают ситуации, когда в механизме или конструкции розетки уже произошли непоправимые изменения – такие розетки обязательно нужно заменить на новые.

Источник: https://RozetkaOnline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/166-pochemu-iskrit-rozetka

Защита от искрения и дуги — УЗИС, AFDD. Виды, принцип действия, правила и ГОСТ для них

На сегодняшний день для защиты электропроводки в наших домах и квартирах достаточно всем привычных автоматических выключателей, УЗО или дифф.автоматов.

Однако в недалеком будущем к ним могут добавиться еще одни устройства, пока малознакомые рядовому потребителю, но все более активно внедряющиеся в нашу жизнь, как на добровольном уровне, так и на законодательном. По крайней мере нормативно правовая база идет именно в этом направлении (ГОСТ Р50571.4.42-2017).

По простому их называют искрозащитные или защитные устройства от дуги. Пока их установка всего лишь рекомендация, но в ближайшие годы все может резко измениться. Подобное было и на первоначальных этапах внедрения УЗО.
Сокращенных названий у данных девайсов множество:

  • УЗИС — устройство защиты от искрения
  • AFDD — так его называют в Западных странах
  • AFCI — аббревиатура применяемая в США
  • УЗДП — устройство защиты от дугового пробоя

Источник: https://1000eletric.com/iskrenie-v-plohom-soedinenii/

Почему искрит розетка ?

Искрение в плохом соединении

Чаще всего, искрение в розетке, это разряды, возникающие при протекании электрического тока не напрямую из проводника в проводник, а через газ, воздушную прослойку между проводниками.

Розетка искрит из-за плохого механического контакта между токопроводящими частями электросети.

Обычно розетки искрят в двух случаях:

1. При плохом соединении жил вводного электрического кабеля с клеммами механизма розетки

2. При плохом соединении контактов разъема розетки со штырьками электрической вилки

Как вы понимаете, искрение может возникать не только в электрической розетке, любое ненадежное соединение проводников может начать искрить. Кстати, это одна из основных причин небольшого количества разрешенных способов соединения проводов в распределительных коробках при электромонтаже.